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rers
FOREWORD

This interim report summarizes the efforts and accomplishments of
the subject contract during the period 28 June 1974 through June 1975. The
study was conducted for the NASA-Lewis Research Center, Cleveland, Ohio,
by personnel in the Computational Mechanics Section, Lockheed-Huntsville
Research & Engineering Center, Huntsville, Alabama. The NASA-LeRC
Project Engineer is Dr. C.C, Chamis, Mail Stop 49-3. | '

S. T. K. Chan and C. H. Lee were the principal investigators for the
‘study. During thé early stage of this investigation, J. N. Reddy was also
involved and contributed to the mechanics of high velocity impact. The study

was supervised initiaily by M. R. Brashears and later by B. H. Shirley.

Work was begun on this contract on 28 June 1974 and all technical work
is to be completed by April 1976. Efforts on this contract are being directed
to the numerical solution of the three-dimensional high velocity impact problem
based on the hydroelasto-viscoplastic formulation. Provisions will also be
made to hook up the developed program with existing elements in the NASTRAN

program through a coupling of Eulerian and Lagrangian modes.

ii
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ABSTRACT

A finite elémenjl: algorithm for, solving unsteady, three-dimensional

high velocity impact broblems is présented. . The compiiter progfr_affn is based
on the KEulerian hydroelasto viscopl'astic formulati&n and the utilization of the
theorem of weak solitions so that the entropy condition is satisfied auto-
mat1ca11y. The equatmns to be solved cons1st of, conservation of mass,
momentum, and ener!gy, equation of state, and apprbpnate constitutive equa-
tions. The solution technique is a time-dependent finite element analysis
utilizing three-dimensional isoparametric elements, in conjunction with a
generalized two-step time integration scheme. Tl':& developed codle is demon-

strated by solving on®-dimensional .as well as three-dimensional impact prob-

lems for both the inviscid hydrodynamic model and 'the hydroelastb-viscoplastic

model. _ i
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G 1. INTRODUCTION ' , x o

ito

) Over the last two decades con31dera.b1e interest has been. shown i the

) study of high velocrty 1mpact problems This is pnmarlly due to the need”
for tfle developmen@ of faster pro_]ectlles and the ‘information concern1ng the
meteormd hazard t'o these prOJectlles. Current, interest in high ve10c1ty im-
pact studies is largely due to the concern over the impact of intérplanetary

debris on space vghicles. However, these research results have other

1ndustrlal apphcatmns for mstance, in the high telocity impact of ob_)ects -~
i T

on tu__rbme blades, i:e., rocks, b1rds or metals.
. O 4
" Motivated by m111tary a.pphcatlons, seven symposiums were held on
the s.ub_]ect during 1955-65 [ - ] under the sponsorship of the Arrny, Air Force
and Navy. The buik of the materiil presented at'these symposiums. consxsm d
of experimental results and very little appeared on the theories explaining-the
high velocity 1mpact phenomena. ‘During the late 1960s efforts were _cxpendcd
toward formulating®realistic theories to explain the complex dynatrn_g__c._an@

mechan1ca1 responge of materials®n hypervelocity impact [8-12] .

_ H , © =~}
-~ i The term "hypervelocity" (o..r high velocity) refers to the impact vels
¢ity regime in which the maximum stress developed by the primary. shogk. .

L - wavejgreatly exceefis the materia.liba strengths of both the target and. the prad
-jectil'e. Durling the early stages of the impact process, the target and the "3

m prOJectlle behave essentially as compressible fluids and, conseq-uently,- s

seve;gal researchers [13 16] have employed pure hydrodynamic models-to-:

.

analyjize the hypervelocity impact problems. However, these sho_ck:--stressa-sz
. decay very rapidly as the wave propagates away from the impaet point and
reacH values comparable to the material yield strengths. F‘]'OITI; this point =
onwatd the material sfrengths become important in determining the stress*

" ancj,g'ielocity fields in the target material and, consequently, due to more

&3
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involved material response to these rapidly applied stresses, the process

gets more c_omplicated. Hence, the purely hydrodynamic model cannot ade-
quately describe the complex physical phenomena [17] and a more realistic
“model must be employed to account for all aspects of the high velocity impact
phenomena. Several researchers have included the strei;'g.th'__e_ffecf'.s (e.g.,
see [18]) and there appeared many computer codes using more realistic
hydrodynamic -elastic-viscoplastic models, [10] and [19-23]. The numerical
techniques were lalrgely based on the finite difference method, and they appear

to be suited for relatively simple (and in particular to hydrodynamic) problems.

Since a h.ydrodynamic-elastic—viscoplastic model is basically a structural
model, it would be appropriate to use structural techniques to solve the problem.
Also, during the impact process, the geometry involved is generally very com-
plicated, which would necessarily require a versatile and flexible technique in
order to treat it accurately and realistically. The finite element method, which
has proved to be highly successful in analyzing structural problems, is considered
such a candidate. Leimbach and Prozan [24] have shown the superiority of the
finite element method over the finite difference method for a simple impact
problem, although their model is rather s"imple and unable to predict the actual

dynamical response of materials in the impact region.

The general objective of the present study is to develop a three-dimensional
finite element code to analyze structural components subjected to high velocity
impact, using governing equations based on Eulerian and Lagrangian formulations.
In particular, the impact point with its vicinity is to be represented by an Eulerian
hydrodynamic -elasto-viscoplastic model, while the remaining structural com-
ponents are to be analyzed with existing computer programs for structural anal-
ysis such as NASTRAN. To bridge the gap between the Eulerian mode used for
the impact region and the Lagrangian mode generally employed in structural
analysis, a finite element code based on coupled Eulerian and Lagrangian form-
ulation is being developed to match the two solutions. The computer program
will, at the end, be capable of handling static and dynamic response of large

deformations, anisotropic material behavior, plastic yielding and material

fracture.
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'-E This report contains mainly the development of a finite elemgnt com 4

N pu‘ter program for the numencal solution of three-dimensional high- veloc;ty

nnpa t problems, based on the Eulerian hydroelasto-viscoplastic formiula¥ién.

‘-.Ihe.ﬁquatlons to be solved consist of conservation of mass, momentum and

s vhgy, equation of state, and appropna.te constitutive equations. tI‘he prn'ﬁ—

Ltwanables i.es density, momentum, total energy, and stresses, are uscd

I gk, vy

ais p\}mary unknowns in the computations. The solution technlque develop‘"d
. R iR

in th:l!G study is a time-dependent f1n1te element ana1y51s utilizing three

. dimensional isoparametric elemeﬁts. The f1n1te element analog of the " go érn-
ing equations is co%structed as a cdénsequence of the theorem of weak soluhons,
so that the entropy condition can be satisfied autgmaflcally in the formulatlon

As an mtegrated pa@rt of the algorlthm, a generalized two-step, tlme—sphttlng .
finite element scheme is proposedito remedy thegrumerical instabilities during
tirne marching. . o N

PR ’ 2
t rame ) ‘I;

F0110W1ng this 1ntroduct1on a description of ;the Eulerian, Lag,ranglan
and coupled Eulerian-Lagrangian formulatlons are presented in 56‘(_1:1(,)1‘1 2.
The latter formulation is believed to be useful in the latter stages of develop-
ment; In Section 3, the mechanics of high velocity impact arc discussed and
the _governing equations are presented in the conservative (divergencce) form,
.alongjwith the specific form of the equation of state for metals. A general,
disciission of initial and boundary conditions is also presented. Section 4 ig
‘devoted to the f1n1te element formulat1ons investigated earlier, utilizing con-
ventidnal methods of weighted residuals, for governing equations with Eulerian
desc¥iption. In addition to probler_n formulat1on,_ element descriptionsand.
B numerical integrations are also discussed. Two time integration schemes,,
& namély, the implicit finite difference and the Galerkin in time, are described

@ .at thé end of this section. Presented in Section 5 is an improved finite ele-

'T;i'fﬁEnﬁalgorithm based on the Eulerian hydroelasto-viscoplastic formulation,
P Y *i'rfé the theorem of weak solutions, together with a generalized two-step
- tlmeésphttmg scheme. Free surface considerations and large systernrequa -

£ tion¥olver are also discussed and will be integrated into the (inal version of

: a b .
i j il : i I -
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the computer code. Section 6 summarizes numerical results and findings on

. a... ni;:mber of test problems. They include the heat conduction problem in solids,
imijact problems computed with an inviscid hydrodynamic model, and a problem
computed with the hydroelasto-viscoplastic model. Summarized in Section 7
are the findings up-to-date together with further investigations to be conducted

during the remaining period.

1-4
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2. VARIOUS DESCRIPTIONS AND FORMULATIONS

Consider an open (i.e., not including its boundary) bounded regi“c;ln' QO
at a time t = 0 in three-dimensional Euclidean space with its boundary 52
(see.Fig. 2-1). The union of 2 and its boundary 82 is the complete region
(occupied by a body at time t =0) and is denoted'“tjs;y

13

Q = uUaQ
‘ o] o]
5

© —
where U denotes the union of tws-sets. Thus, in Fig. 2-1, QI denotes the union

of Ql and its boundary 391. Note that the region QZ has two boundaries: onc

external boundary 352 and one inter'na,l (the interface) boundary BQI.

A @

%

an

Impact Point

'-" Fig.2-1 - A Three-Dimensional Region at t = 0 .

i g
)t

&
.
3%
'
—_
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Suppose that we are given, at time t = 0, the state 6f the fluid (or solid)
occupying the region Qo; the external forces acting on the boundary, and the
boundary conditions. We are then required to determine the state of the fluid
and the shape of the region at é subsequent time, t = T. Since we plan to
analyze the impact point and the surrounding region, Ql, separated from the
remaining region, it is convenient to consider two different fluids (or materials)
occupying two different portions, Ql and QZ, of Qo; that is

2, = 9V 9,8 = U
The surface 35'21 is the material interface of the two regions, and it mov;s:s,
as time advalnces, in such a manner that the pressure (or stresses) and velo-

city components are continuous.

2.1 EULER AND LAGRANGE DESCRIPTIONS

There are two basic descriptions well known in continuum mechanics
with respect to which the governing equations can be derived and computations
can be carried out. In the Lagrange description, mostly used in solid and |
structural problems, a coordinate system is fixed in the body or configuration
Qo to be studied. The deformation of the projectile-target configuration is
then measured with respect to this deformed configuration. Consequently,
the positions of the boundary 92 and of the material interface 391 are auto-
matically determined. The description also permits the use of constitutive
relations for the material in which the stress history of each portion of the
body is taken into a.ccount.- However, the Lagrange description is totally
unsatisfactory for calculating a flow in which turbulence develops or in which
new material interfaces develop. In this case the nodal points of the mesh
will attempt to follow the motion and the material particles which were initially

adjacent to each other in Qo no longer remain so as the turbulence develops.

In Eulerian description, mostly used in fluid mechanic problems, the
coordinate system is fixed in the space rather than in the body or configura-

tion, and the calculations follow the material point that happens to be in a

2-2
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given location at that particular time. In this case the large distortions do

not cause any problems, however, more than one material cannot be treatecd

. accurately. The curves approximating 902 and E)Ql move with the body and

therefore create irregular, time-dependent boundary zones in the fixed

Eulerian mesh.

2.2 COUPLED E{ILERIAN—LAG‘RANGIAN DESERIPTION

*  Obviously, neither Lagrange description nor Eulerian des"c:ript'i.on alone a
is ideally suited for the analysis of impact p'r;b’ble'ms. It is both natural
and desirable to combine the use of Eulerian and Lagrangian modes depending
on whether the material is in a f{luid state (Eulerian mode) dr solid state
(Lagrandian mode). In doing so, there will be a great deal of flexibility in
approximating thesproblem, thus enhancmg the solution process regarding
accuracy and computational efficiency. The idea is very similar to the well
known substructuring technique, but now with different descriptions (or modes)
used in various re?g.ions. More specifically, in analyzing the impact problem
of structural components, the exibting NASTRAN program (in Lagrangian
mode) can be used to advantage for the structure part, while an Eulerian
description is neces sary for the impact point arfd its vicinity. In the following,
we discuss how to couple an Eulerian mode with\'a Lagrangian mode, in partic-

ular, the NASTRAN program. i

Conceptually, the coupling gf Eulerian and Lagrangian modes can be ac-
corn‘plished throug% the use of a Coupled Eulerian-Lagrangian Code (CEL), both
involving velocities, v, as unknowns [25] . Furthermore, if it is desirable to
use also the NASTRAN program with displacement, u, as .unknowns,- another
coupling of the Lagrange mode with the NASTRAN program (CLN) must also be
considered. Figure 2-2 shows a configuration consisting of these different
descriptions. In the figﬁre, the dotted lines represent the interfaces between
différent modes. The interfaces belong to the Lagrangian mode and are to be
adjusted as time advances. Therefore, the coupling of an Eulerian mode with
the NASTRAN mode is to be accomplished through two steps, i.e., the CEL and
CLN codes. ' &

B
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E-L Interface

Fig. 2-2 - A Typical Configuration to be Analyzed Using
Various Descriptions

The basic idea of the CEL formulation is to approximate a configuration
by the combination of Eulerian and Lagrangian subregions, with the boundary
and interfaces described by Lagrangian lines. The Eulerian mode will con-
sequently have its boundary prescribed by the Lagrangian calculations. Thus
the Eulerian calculation reduces to one based on a fixed mesh but having a

prescribed moving boundary to reflect the coupling effects.

2-4
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Consequently, the calculations that are made at ea&h time step will involve
.three parts: Lagrangian calculations, Eulerian calculatione, and a calculation
which couples the Eulerian and Lagrangian modes by keeping track of the
moving interfaces and the matching of pressure, velocities, etc., along this
interface. Suppese that we know the solution of field variables (energy, density,

velocities, etc.) at the nth time step, tn, and wish to compute the solution at

the next time step, t n+1' Since we know the positib_n of the Lagrangian mesh,

i, and the Eulerian® ‘mesh, ET, with its bouridaryl's',ubject to move, the calcu-

lations for the next time step can proceed in the following way.
The first calculation uses the known (t=t") state of the Lagrangian region

and thé pressure acting on its boundary to solve thé equatlons in Lagranglan

n+l

desc r1pt1on. The soffition gives us the t=t state in this region and also a

new mesh position, Lvn+1

The boundary of the Eulerian région is then updated, using results from

n+1 state of the fluid in

n+1’ and computation is performed to seek for the ¢

L
the region E. This i§ considered as the Eulerian phase of the CEL calculation.
> ) . 3 .-

n+l

Having determined the t state of the Eulerlan region, the second phase

of couplmg is to detefmine the pressure to act on the boundary of*the Lagrange

region Ln+1 We have thus advanced all of the field variables and grid positions

to their values at the next time step, which completes one basic cycle of the CEL
&
calculations. -

1
ot

Similar logic and procedures can be followed for the coupling of L (v) with
NASTRAN. Herein, the conversion between velocities and displacements can be
done through integration in time. Another consideration is the generation or

suppression of nodal unknowns on the interface, which can be accomplished using

the approximating polynomials. .

Another possible way is to couple the Eulerian mode with NASTRAN directly

F(CEN) as shown in Fig.2-3 on the following page. In this case, no formulation for

Py
{ a0y,

* b ;'% &
2-5
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the L(v) region is necessary, but the coupling must be done th‘rough the E-N
interface. This is probably somewhat more complicated because the coupling
involves simultaneously two kinds of descriptions in terms of different field
variables. However, in light of the possiblé savings in computa.ﬁonal aspect,.

this approach is also worth investigating.

.

~E :N Interface

o r— e L T O

¢r o

Fig. 2-3 - Coupling of Eulerian Mode with NASTRAN

2.3 LOCAL REPRESENTATION OF DYNAMICAL SYSTEMS UNDER AN
ARBITRARY FRAME

In order to construct a code coupling the Eulerian-lL.agrangian modes,

it would be more convenient if the field equations are presented in their local

2-6
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L

form under an arbitrary frame of reference. More specifically, let x = (x :
S Xy, X ) be a Cartesian coordinate system moving with a certain velocity rela-
- tive to the motion of the phys1cal field, and let X = (X 2, X ) be the refer-

ence system. Then, the two coord1nate systems can be related as

~

x = x(X,1) | - (2.1
. .
When we know such a relation for every material particle in the fnedium, we
say that the history of the motion is known at time t. We assume that the
motion is continuous, single valuedtand that (2.1) can be inverted to give the
initial position or material coordinates, X. A necessary and sufficient condi-

tion for the inverse to exist is that the Jacobian should not vanish:

Bxi _
—— 2
5% 0, 0<T< oth>0 (2.2)
J
Let 2 denotes the velocity of A material element relative to the x system,
i.e., '
d x

dt

i

Q

= v-x (2.3)

where v is the velocity of the ma.ter.,xal element, and x = 9x/0t is the local time
rate of change of the x system. If T represents a certain physical quantity

satisfying a dynaml\_sl system, then%he total time derivative follows the equality

dF _ 9F
dt - 5 T @-WF | (2.4)

Clearly, when x = 0, the systems x-and X are idential, and x represents the
Eulerian system; when. _:5 =V, on the other hand, it represents the Lagrangian '

system.
[

i

&
7t

R
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- FolloWing the implicit differentiation rule, the divergence of the local
‘rate of change of x system can be related to the Jacobian as '
vex=1/3 o (2.5)
thus, (2.3) vields

VeQ=V.y-I/J (2.6)

Suppose now that there is a dynamic system with physical quantity ¥

satisfying the equation

dF _

?t' - G(i)t) (2'7)

In particular, the continuity equation in x system is readily obtained as

dp B}
By pyey = 0 (2.8)

Then, the dynamic system (2.7) can be deduced by applying (2.3), (2.6) and (2.8)

into the following form:

L;%@ +PFA + V+(QpF) = pG (2.9)

where

A=J/3

It.is clear that the dynamic system (2.9) would reduce to the Eulerian form

when —}5 = 0; and to the Lagrangian form when = 0.
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3. MECHANICS OF HIGH VELOCITY I.MP'ACT

The high velocity impact of _a.-'fp'rojectile with a solid target results in
an extremely complaéx phenomenon. A complete descrlptlon of thlS problem
would involve considerations of all phases in the theory of contmuum me -
chanics. This includes not only the compress1ble fluid flow, dynamics of
elasticity and plasticity, but also other behaviors’ such as melting and solidi-
fication, vaporizatidn and condensa'ﬂon, and the kinetics of phase change.

§

Several models have been proposed for the various stages of the high
velocity impact prol;le'rns (see, e.g., [10] , [13—16]; [ 19-23]). Two models
corresponding to different stages, namely, the inviscid hydrodynamic model
and a hydroelasto-viscoplastic model, are proposed and analyzed in this study.-
The following discusses the mechanics of high velocity impact.

3.1 IMPACT PROGESS

“The analysis o,',f high velocity .projectile mechanics can be divided
into two parts: (1) dynamic behavi?r of the projectile and target during the
penetration proc ess, and (2) structural response of the target after the pene-
traticfn process is complet'od. 8 8

S

(]
" During the short period of time in which the pro_]ectlle contacts the

target, a plane shock wave is generated in the projectile as well .as in the
target. The pressure behind these shock fronts is the largest pressure that
exists throughout the entire impact process. Due to the high pressure the
material strength of the target can be ignored, and the material can be
assumed to behave eséentially as an inviscid, compressiblé fluid., The shock
waves generated in the projectile and target travel away from the interface
(see Flg 3-1). If the projectile is finite (in diameter), rarefaction waves will

be ge‘:perated and transmitted toward the axis of symmetry.

3-1
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h Target-

Shock Front in
the Projectile

Pressure Pulse

Shock Front in
the Target

Ejected Material

\o Deformed
°®  Projectile

b0

Pulse Propagation

Fig.3-1 - High Velocity Impact Process
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Formulation of rarefaction waves results in the e_jeétion of target and
projectile material particles.' Moreover, the raréfaction waves weaken the
shdck waves and change its plane shape to approximately spherical. The
strength of the shock continues to decrease due to the spherical atténuation
and additional rarefaction waves, and the influence of the material strength
and the strain rate effects must be taken into account.

5
? "

3.2 ilANKINE-HUC:é)NIOT RE LA'I'iONS -

As aforementioned, the material can be con;s;fidered as an inviscid, com-
pressible fluid in the short period right after the impact. The problem, in-
cluding the geometric development of the impact shock, can then be treated
as an unsteady, supefsonic flow resembling a moving shock.

Assuming that the hemispherical shockwave profile is steady in time,
the Rankine-Hugoniot relations relating the pressure, P, internal énergy, C,
and the density, p, behlnd the shock to the same quantities in frori of the shoclk
are applied. These’ equatlons express the conservation of mass, momentum,

and energy in termsgof the shock velocity, Ve and particle ve]ocrfcy, v

Povy T iy c v &l
P-P_ 7 PoVe Vp . (3.2)
. 2 )
b XPM
[(6 T &) - 2"’]po Vs = PoVs (3-3)

where the subscript o refers)to the initial (or undisturbed) values. The

product P, Vg is called the shock impedance. Using (3.1) and (3.2), (3.3)

can be written as

1 1 '
¢ =5 ®+PI(5E - 7) (3.4)
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Solving for v, and o from (3.1) and (3.2.),.we obtain

®_-DP)

_all o L l. ) ? '
Vs -Jpo ( 07_,,_'_‘__ D' Yp < \/p (P-P)) (p/po - 1) - (3.5) .

The initial pressure, Po’ is generally very small and can be neglected in
cbmparison with P. If shock velocity and patticle velocity are known at a
point on the shock front, the pressure can be computed using (3.2). One
more relation is needed to solve the flow across a shock, namely, the equa-

tion of state; a specific form of the equation of state is given in Subsection

3.4.

3.3 BASIC EQUATIONS

As pointed out previously, an inviscid hydrodynamic model is a good
approximation in the early stages of the high velocity impact when the pres-
sures developed are much larger than the shear strength of the material.

It ceases to describe the phenomenon adequately in the later stages of the
impact when the influence of the shearing strength cannot be neglected.
Therefore, the elastic, viscous and plastic effects of the material must be
included. The equations governing the dynamic behavior of elasto-

viscoplastic materials are described below.

3.3.1 Conservation Equations

The conservation of mass, momentum and energy leads to the following

equations by letting A = 0 and 2=y in Eq.(2.9):

St a v =0 (3.6)
1
3 0 3]
=g Pvy) + gx—J (PVj vi) = g{ (‘Tij) + Pt (3.7)
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9g

at(pe)+aJ(peV)= aJ(a v)+pfv+ps—a1 (3.8)..

X

)
&

where p is the .d'ens'x.ty, vy is the velocity in the _xi—direction, cij is the stress
tensor, f, is the body force per unit mass, e is the specific total energy

defined as . . . L ‘g

v. V. " | (3.9)

€ be1ng the mterna:]; energy per unit mass, S Ls the rate of internal
specific heat gener?}.tlon per unit mass, and q; is the heat flux or the rate o/
heat flow per unit atea across the_t_‘surface in the*dlrecnon of its unit outward
norrp.a.l, n,. ,‘ |

E

3.3.2 Hydrodynanﬁc- Elasto-Viscoplastic Constitutive Relations

* When the medium under consideration is inviscid, there are no shearing

stresses. The stress tensor then becomes
.L'

c.. = -P3§.. : (3.10)

where P is the hydrostatic pressure that is independent of orientation, and
6.1. is the Kronecke® delta. In general, the stress tensor and the correspond-
ing strain rate tendor are related&o their respective deviatoric:tensors by

" &

the following formss

1
S = Oyt T T by (3.11)
a, =d.- =~ d, 8 (3.12)
1] ;7 3 %k :

where Sij is the deviatoric stress tensor, dij is the strain rate tensor define:l

by .
& Bv.1 v, :
| d,. = (8—x—J— +5—i-) ' (3.13)

i Iy i
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and_d{j is the deviatoric tensor of strain rate. The deviatoric stress tensor,
S.., in turn, is related to the strain rate tensor dij through another constitutive

equation. For linear elastic materials, the constitutive equation for stress

and deformation rate is given by

S % Bijke Y N CR £

where Ei' is a fourth-order tensor of material parameters., If the stress

jkd
components Gij are symmetric, Eijkﬂ
Ejiﬂk' etc. In general, there are 21 independent elastic constants. For ortho-
tropic materials, the number of independent constants reduces to 9, and for

is also symmetric, i.e., Eijkﬂ = Eijfk =

isotropic materials it reduces to 2. The isotropic constitutive relation is

given by

2

Sij = 2K dj;+ady 6 (3.15)

where A and U are the Lame's (or viscous) constants.
Let us denote the mean of the principal components of stress by

3 é- o (3.16)

Q kk

The quantity Q is called the dynamic pressure. The rate of dynamic pres-
sure dQ/dt may, in general, be decomposed into a thermodynamical reversible

component dP/dt and a dissipative component dr /dt, i.e.,
g8 _ 4=, dr (3.17)

In general, the rate at which the local thermodynamic equilibrium is attained
is. much greater than the rate at which a disturbance can be propagated. It is
then reasonably accurate to assume that the local thermodynamic equilibrium
exists at each instant. Hence, the reversible rate of pressure, dP/dt, is not
path-dependent, and its integral P follows the equation of state which can be

expressed as a function of density p and internal enefgy €, L.e.,

P = P, ¢ (3.18)

3-6
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The dissipative 'cbrhponent dr /dt, on the other hand, is generally a path-
dependent function related to the bulk viscosity and the rate of the change of
volume. It characterizes the physigal diSSipati\}e rate of dilatation. For
isotropic materials, - '
P -t 2 oma, (3.19)
The cdefficient of bulk viscosity is defined by
o=+ £ o o= (P-Q/d (3.20)
3 kk :

If the volumetric changes of the materials are elastic, the changes of dynamic
pressure is reversible which implies that dQ/dt = dP/dt. Then the path-

independent nature of P yields
Q =P = Pp,e¢) (3.21)

Noting that for incompressible materials (dkk = 0), Eq.(3.21) follows

immediately., Equation (3.21) is also true for compressibl'e fluids for which

(A + L) = 0 (3.22)

Wl

Condition (3.22), known as Stoke's hypothesis, is a reasonable assumption for
flow of monatomic gases; however, it is not valid for polyatomic gases or -
liquids, and distinction must be made between the mean stress Q and the

thermodynamic pressure P,

For high velocity impact problems, the thermodyne_imic pressure is very
high, and as aforementioned, the dynamic response in the material can thus be
considered as an isentropic process. This implies that the material under
high velocity impact can be assumed to possess the elastic changes in volumé,
and (3.21) follows. |
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_ Unfortunately, there does not exist a constitutive relation that describes
all aspects (elastic, viscous and plastic) of mechanical behavior in a single
expression. Constitutive relations of plasticity and viscoelasticity are essen-
tially d.ynamical in nature. The constitutive relation in classical plasticity
involves tensors of stress and rate of deformation, and describes rigid, per-
fectly plastic behavior. When elastic effects are to be considered in the
analysis, this relation abplies to the plastic part of the rate of deformation _
tensor, Similarly, the constitutive equation for viscoelastic material involves
.stress, elastic rate of deformation and the rate of deformation of a viscous |
fluid. In both cases, the clastic component of the rate of deformation tensor
is usually written as a function of stress rate. Although the stress tensor is
objective (axiom of objectivity requires that if a stressed continuum performs
a rigid body motion and the stress field is independent of time when referred
to a coordinate system attached to and moving with the material, the stress
rate must vanish identically), the stress-rate tensor is not. Therefore, the
stress rate do‘.lj/dt should not occur in this form in the constitutive relation.
An objective tensor containing the stress rate must be defined. Several ob-

jective tensors containing the stress rate can be constructed. One such tensor

is due to Jaumann (see [ 25]) and is given by

s o=, 3.23
°ke = 7at ¥ %km “ms " "meYkm (3.23)
where | . avi By
Wi; T2\, . (3.24)
: j i .
The tensor ékl is called a stress flux. Other stress fluxes may be obtained
by adding objective tensors such as oy m dmﬂ to the right-hand side of (3.23):
do |
A ki
Oy T dt + omlvm,k+okmvm.l
A doki
= e— . - v 3.25
%% * "t " “mt k,m " %m ' £,m (3.25)
do.
5 - XL - v
%t * "I " %mtVk,m  %kmVem ¥ %tV m,m

3-8
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The stress flux &, , measures the rate of change of‘the stress componeﬁts

ke .
with respect to a rectangular Cartesian system that participates in the rota-
tion of the material,-and &ij = 0 implies that the invariants of stress tensor

are stationary.

In general, the rate of deformation tensor d.lj can be split into two 'part.s, _
i.e,,
a. = 4. +4 P - (3.26)
1] 1] 1] o '
where dfj is the elastic component and d;’jp is the viscoplastic component of
the deformation rate tensor. Here it is assumed that the medium is initially
; . ]
unstressed. For linear elastic material, the elastic part d.le. is related to Sij
by Eqg. (3.14), and for linear elastic-viscoplastic mmaterial dfj' is related to
A . .

the stress flux Sij as

S C,. ,dc ' '
ij © “ijke Yke . (3.27)

in the elastic region. Here the coefficient matrix Cijkﬁ depends on Eijkf of
Eq.(3.14). For isotropic material satisfying constitutive relation (3.15), Eq.
(3.27) can be deduced-further as . ’
~ dSs..
'S, = —24+85 w_ . -5 .u
1j dt im "mj mj im

i

I
[\
=

(3.28)

Plastic behavior is assumed to take place when a certain function of
deviatoric stresses vanishes. This function is calléd the yield function. The

yield function is constructed based on the following assumptions:

1. The yield surface is convex (or smooth).

2. The plastic component of the deformation rate tensor
is normal to the yield $urface at a smooth point.

:.3-9
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If a yield condition is .given by -
. F;(o'ij'“) = f(oij,_x) -Y(k) = 0 : (3.29)

A
with F < 0 denoting the purely elastic region, then the deformation rate tensor
will be a function of positive values of f. Here Y is a yield stress and « is a
hist_ory dependent hardening (or softening) parameter. We now introduce the

notion of ''plastic potential"dl(oij) defined as

v

90 ..
1]

P = < (£/£,) > (3.30)

i
where y is a fluidity parameter which may depénd on time, invariants of the
rate of deformation, etc., and fo denotes a reference value of f that makes the
expression non-dimensional. To ensure no viscoplastic flow below the yield

limit we write

A
‘ 0 F<o
< qS(f/fo) > = A (3.31)
(d)(f/fo), F>0
A sufficiently general expression for ¢ (f/fo) is given by a power law )
_ n ,
¢ (£/£) = (/1) (3.32)

Various yield criteria and plastic potentials can be introduced depending
on the material under study. For isotropic materials, for example, there are
two well-known yield criteria: the Tresca yield criterion assumes that the
yielding occurs when the greatest difference between any pair of the principal
stresses 0y 0y and O3 reaches a specific value, Y. Usually, Y is taken to be
the yield stress in uniaxial tension. The von Mises yield criterion for plastic
yield is
(0, - a,)° + (o, - 03)2 +(og-0) =2 ¥

or expressing in terms of Gij’ we have
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.
-}

2 2

2, 2 .2 . 2 2
(@1 = Opp)" (05 = Ta3)" + (03357 01))" +6 (0, + 0753 +033)

2 Y (3.33)"

In what follows we shall take a inore_mgéneral yield function that is defined in

terms of stress invariants as

£(o; ) =_¥ £(3), 35, 05) | | (3.34).

where Jl’ JZ and .]'3 are the stress invariants,
% 2

~

'- I R _oa
Ty =% T = 7 SySp T3 = 3 S8 Sy

Clearly, von Mises yi,eld criterion, Eq.(3.33), is a special case of Eq. {3.29),
A

Where F iS given by

where Y is the uniaxial yield stress.-

A 3
For a special case in which ¢ = F and Y is independent of oij’ we have

from Eq.(3.30)
i
vp . n g s - n
d.lj = y(E/f) aF/Bo.lj = 'y(f/fo) 8f/8SiJ.
and for nn= 1, and f gi:ven by Eq.(3.35), this reduces to
2

VD _ §§. '
dij = (-y/fo)Sij : (3.36)

After normalizing the yield surface by the von Mises yield stress, i.e., letting

F = f‘/Y, a more general form analogous to (3.36) follows from (3.35), namely
. [

o

VD ey .
dij = vy @(F) sij/'/J2 | | (3.37)
where i
A S__ S
3 Y &
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and the plastic potential

0 for Fg 0
' ¢(F) =
- #(S;;) for F>0

Thus, the stress flux for this case becomes upon substituting (3.37) into

a’P = o

(3.28), while noting Lk = 0

Sij = Zp.(di’j ~ v ¢(F) Sij/"JZ ) : (3.38)

Here, the material parameter y and the plastic potential ¢ have to be found

from experiments. For example, y and @(F) of 2024-T3 aluminum are réadily

obtained as

P = e -1 for¢<¢o

¢

il

©
o .
A+
[+

2 (F - F,) ford>¢,

and y = 0.15 \/3- sec_l, where ¢_ = 106, F_ =6 loglp +1), and 8 is a new

material function which depends on the generalized plastic strain €p as

8(c,) = 0.0003 +0.0214 ¢, - 0.0243 e; for e < 0.4

0.005 for €5 > 0.4

Here, the generalized plastic strain is

t
= 2 4P p
€ ~ 6[ J 3 dmn dnm dt
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3.3.3 Equation of State

“D

Since the governing equation; contain the pressure (implicitly, in. cij);
a constitutive relation must be used relating the pressure to the density and
the specific internal energy. This pa'.rtic.\.llar constitutive relation is well
known as the equatién of state. For high velocity impact of solid bodies,
two equations of state are well known. One of these is developed by Tillotson
[27] and the other is developed by Osborne and his associates at Los Alamos
Scientific Laborafor:y. |

)

Tillotson's.Eq'iuation of State: Tillotson's equation of state (for either

compression or expansion regions).is given by ..
5 .
P = 7w(esp) +Ap +Bp o, (3.39a)

for p>p, with 0 < ¢ < és’ and

) | 5 '_
P = aep.+[ bep . 4 ay e PO/ n-1)[ -2(1/n-1) (3.39h)
' (1+¢ele, .
]
for p < p_ with € > és’ where ®

p =vn-1, n = p/QO, [ initial density

1 ¢ b ’ N
w o wle,p) = epla t > ] .
) e/eor' + 9 '

-

and a,b, A,B and €, are Parameters (constant) which depend on 'i,he material,
and €4 is the sublimation energy. ,Values of these parameters for some

materials are given in Table 3-1.
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Table 3-1 . .
VALUES OF THE PARAMETERS IN TILLOTSON'S'EQUATiON

Parameter Aluminum Iron Copper Lead
b (gm/cm>) 2.702 7.86 | 8.9 | 11.3¢
a 0.5 0.5 0.5 0.4
b 1.63 1. 1.5 2.4
A (mb) 0.752 1.28 1.39 0.466
B (mb) 0.65 1,05 1.1 - 0.0026
a 5.0 5.0 5.0 10.0
B 5.0 5.0 5.0 2.0
eo(mb—-cm:/gm) 0.05 0.095 | 0.325 0.02
e (mb-cm” /gm) 0.03 0.0244 | 0.0138 0.0026

Note that (3.39) is not defined for certain states, for example when p < [
with € < €40 and p > P, with € > (3 Some investigators have used some
kind of average of the pressures given by (3.39a) and (3.39b) for these states.

At this writing Tillotson's equation is not used in the calculations.

Los Alamos Equation of State: Another equation of state that is widely

employed in high velocity impact calculations was derived at Los Alamos

Scientific Laboratory. The equation is given by

[An + 6E (B + EC)]/(BE+ ¢ )y u20

Ple,p) = A A N (3.40)
[pA, +86E (B_+uB, +EC)]/(BE +¢_ )y p <0

where

6 = p /P, u = p/p -1

A = A +pA,, B =B_+u(B; +uB,)

)
C =C, +uC;, E = pe
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?

and Al’ AZ'BQ’.BI’BZ’ Co’ ('J1 and :(ﬂo are constants that depend on the material.
Values of these parameters for plexiglas, graphite,_ aluminum, iron, .copper ~

and lead are given in Table 3.2,

Table 3-2

VALUES OF THE PARAMETERS IN THE LGS ALAMOS EQUATION
OF STATE FOR VARIOUS MATERIALS

Parameter | Plexiglas | Graphite | Aluminum | Iron Copper Lead
oy 1.18 2.25 2.702 7.86 8.9 11.34
A, 0.006i99 | 0.1608 | 1.1867 7.78 4.9578 1.4844
A, 0.015491 | 0.1619 0.763 31.18 3.6884 | 1.6765
B, 0.14756 0.8866 3.4448 9|.591 7.4727 -| 8.7317
B, 0.05619 0.5140 1.5451 |[15.676 |11.519 0.96473
B, 0.505(34 1.4377 0.9643 4,634 | 5.5251 2.6695
C, 0.5575 0.5398 0.43382 | 0.3984 | 0.39493 | 0.27732
C, 0.6151 0.5960 0.54873 | 0.5306| 0.52883 | 0.43079
@ 0.100 0.500 1.5 9.00 3.60 3.300

T
; .
The parameters arg fitted for gram-centimeter-microsecond system of units.
A comparison of the pressures computed from Tillotson's equation of
state and Los Alamos equation of state is made for aluminum (po = 2.702
gm/cm3) at € = 0.5 mb-cm3/gm (see Fig.3-2). The equation of state which

closely agrees with ‘the experimental data for a given material will be used.

Hugoniot Equation of State: Ak mentioned earlier, we need to add an

equation of state to the Rankine-Hugoniot equations (3.1) through (3.3). For
instance, Eq. (3.40) inay be used and with the internal energy e eliminated

using the Rankine-Hugoniot jump relation (3.4) to obtain

2
2 [Fz(a) -{Fzm - F,(8) F3(a)]/Fl(6), 6§<1

P = (3.41)

5
B

13-15



LMSC-HREC TR D390900

10.0 -
Tillotson's —\
- . Equation \
9.0 — of State AN
8.0
Los Alamos
Equation of
State
7.0 —
L 6.0]
m e
o
®
a0
v
g
n, 5.0
) Expansion Region
5 - |
o Compression
v 4.0— Region
o
3.0 }—
2.0
1.0 (.
0.0 I . 2 _ L
0.0 1.0 2.0 3.0

Ratio of Densities. /)/p)
3

Fig.3-2 - Variation of Pressure vs Ratio of Densities for Aluminum

(p, =2.702, ¢ = 0.5)
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where 6 = po/p, and

E (8) = (1'5;'\‘5) [(1-6) {('co - Cpeé+ cl} -'2.;?]
N G I
. __qu.(cS)_ = -tz [B,-B)) 6 + B,]+w 8

- o= R . 3,
Fl = E,8, FZ = Ez«s. - B,(1 - &) /2

' 2
F,_g;t; = E;6 + A, (1-8)

"

and the constants AI’AZ’ .. ., are the same as those appearing in (3.40).

3.4 INITIAL AND BOUNDARY CONDITIONS

¢

To complete the déscr_.i‘ption of the high velocity impact problem, we
must include the initial and\boundary conditions, which, in general, are

time dependent.

Initial Conditions: At time t =0 values of all the dependent variables

(p,v, €, P, ) must be specified at the nodal points of the mesh. It is not essen-
tial to spe:ify all these quantities at the same set of nodal points. For

instance, in the analysis 6f_j_£arget alone, the velocities, density and specific
internal energy are.specifigd at one set of points, and pressure is specified
at a different set ?f points. Y '

0

Boundary Condiiions: Depending on the type of the boundary (e.g.,

rigid boundary, free surface, interface, plane of symmetry, etc.), there

are different kinds of boundary conditions in a problem. At a rigid boundary
the normal component of the Particle velocity must coincide with the normal

component of the vélocity of:'the rigid boundary. For a fixed (in time) bound-
'a.ry, the normal component of the particle velocity must be zero at that

boundary. A plane of syrmnétry can be interpreted as a fixed boundary.
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On a free surface, the total stress must vanish. At an interface {and at a

contact discontinuity) the total stress and the normal component of particle
velocity must be continuous, and the density, internal energy and the tan-
gential component of particle velocity may be discontinuous (jumps). Across

moving shock fronts tne Rankine-Hugoniot relations (3.1) through (3.3) must

be satisfied.
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4. BASIC FINITE ELEMENT PROCEDURES

In this sectign, we summarize the basic finite element pl;gcédures as
applied to solve the impact problem as governed by a set of hydrodynamic
and, constitutive equations. The formulations ar)e based on the conventional
methods of weight(.a.d residuals, i.e., the Galerkin and least squzlgres approches.
First, the governing equations to be solved are ﬁresented. Finite element _
analogues for these equations are then constructed via the Galerkin and least
squares approaches. In numerical aspects, the isoparamei:ric élements together
with nurnerical""i"ntegration. are d.,escribed, and iﬁ_nally, two ti‘ljhe-marching '
schemes are presénted. The procedures discussed here serve as a reference
for the development of an improved model described in the next section. Also,-
the numerical results so compute!d provide data for comparison purposes.
These methods hav}e been found td be quite effeci;ive for solving: problems
governed by elliptiit and parabolia equé.tions. HCaiWever, for hyperbolic system
of equafions, numerical instabilities were encountered, indicatipg conventional
methods of weightéd residuals cannot be directly applied to soh}e the impact
problem. For these reasons, an'improved schel;ne based on the theorem of
weak solution was %leveloped, whicuzh is described in the next section.

i
&

4.1 GOVERNING &£QUATIONS

With the internal heat generation and heat flux set equal to zero, the set

of equations conserving mass, momentum, and energy becomes
: % L]

¥

) =0 (4.1)

D (p) + 2
)+ oy,

9 £ R - I
3t (ov,) + 3"_-; (pvj v,) = CE (oij) + pf, (4.2)

f — . mar
7



'LMSC-HREC TR D390900

o, 3 g B , _
T P N L (4.3)
For the purpose of numerical computations, we denote
pV:.l = Vi, pe = E, ’Ofi = Fi
=20 M 0%, 9% (4.4)
8x, 8% T 8%, - Bxy '
and rewrite (4.1) through (4.3) in an alternate form
3 o -
b v v, o, (Pt @p =0 (4.5)
-?—(V)+ v 2 (V) + @V, = E__a (o..) + F. (4.6)
at iox, ") ] N0 J
2 (E) + OF = o (o, v.)+ Fiv
| ax; jivi o ivi (4.7)

a
5 (B) +v; 5%,
i i

The stress tensor, O,., can be expressed as the sum of a deviatoric

stress and a dynamic pressure, namely,

_ 1

For high velocity impact problems, the first invariant of stress tensor is ex:

pressed by
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The dewatonc stress is, in turn, governed by a const1tut1ve equatmn in the

form
- Yk a'x = Ciike %t~ Sim Ymj t Smj Yim +92)

For isotropic materials satisfying von Mises criterion, the above equa-

tion reduces to

s - ., " ‘4 . - - <
8S,1 8S.1 |‘ S1
.__] - v - __J -
T ,‘.}'Bt Tvk o K 2 ld Y@F) ‘F—J- im wmj mj Wi (4.9b)
% { ‘,,?z- ‘. — L. 2
e ! s
Cwhdre R s .60 e Gk
: o v i
! = .:.l. d
ij i) 3 kk "ij
ov dv
R S (IS T X
ij — 2 x. Ox,
j i
mn Snm
. F = —_—————
X . R ,!:' ‘” . _; - _2; YZ ].
: , ca A t'L - 3
¢ (F) = Pldstic potential with @(F) =0 for F <0 and
BN L J2 % 2 °mn "am
Bl e b ?w . w "-‘"Q; o .

: 3-:'!;,
To 1nc1\;uix the elastic -vxscoplashc effects the constxtutwe equations and

conservation equations must ‘be solved simulfaneously with the aid of an equa -

tion of state

P=P{p.c) | (4.10)
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4.2 FINITE ELEMENT ANALOGUE BY METHODS OF WEIGHTED RESIDUALS

The finite element formulation posed herein is baseéd on the conservation
equations (4.5) through (4.7), the constitutive equations (4.9) ar_id the Los Alamos
equation of sfgte. In p_rinciplé, five conservatioh equations and nine constitutive
equations must be solved simultaneously by the proposed finite element method.
This approach, however, is not practical because it requires an extremely large
storage space and possibiy a large amount of computation time. Therefore, an
alternative approach is introduced to solve each set of equations separately but

with certain iteration procedures to couple the two systems of equations. o

In this subsection, we discuss two finite element models constructed with
methods of weighted residuals, i.e:, the QGalerkin approach and the least squares
approach. THe investigations were conducted to determine whether the finite
element concept with conventional methods of weighted residuals can be applied
to solve the high velocity impact problem, which is governed by a system of
hyperbolic equations. Also they scrve the purposes of program debugging and
the development of a number of subprograms which are subsequently used in
an improved finite element model. The developed procedures have been applied
to solve a number of heat transfer problems, and impact problems as well. The

findings from these numerical computations are presented and discussed in

Section 6.

4.2.1 The Galerkin Approach

Consider a nonlinear boundary value problem of the form
47w =T | (4.11)
[N ~ ~ .
wheredv/is a nonlinear (differential) matrix operatcr, A is the column vector

of unknowns, and I is a column vector of the known quantities. Writing the

conservation equations in this form, we have



R |
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¥ B [ : '. -
' ;
@ e
A -9 7] - 3
pt * Vi Bx, © 0 0 p
‘ SR 3 e 0 : . .
‘/W(gh 3 o . B tVisx tO - o0 Vit (4.12],
' . 1 .
: 9 9
0 4] atl¢+ v 3 + 6 E
| _ & 1\ J
1 K
M, » N . G
. ¢ 0 '.9.; ,.‘ .
and . L o ‘ .
+ "o U' r 0 L3 W :;2. ‘
' : 9 ¢
| ' L= 49x (0% ¥y % | (4.13)
8. .
& .
. )
- Jx Oyt Fii )
s sl
I .

Sim¥%larily, the constitutive Eq. (4.92) can be wri’é’ien in the same form as
il @
o o

a9

F)

/W(Aij)' [— * Vk axk] B

(4.14)

and

3
—_ - . e' ] . J Y
T35 Cijke At = Simn Yim T Sim® i - (4.15)

iy
.
Z 4-5 U b
. &
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In the finite element/Galerkin method, approxunatwns to p, V , E, and
S, . i are sought in the form

p =N, p,

V =N V

~ s ~8
, s=1,2,...,n (4.16)

E = N E

s 8

g = NSNSS

wherein n is the total number of unknowns, N are the shape (or trail)func-
S

tions in space, P Es, andNSS are the unknown time-dependent parameters

AN
to be determmed; here V (tilda number) represents the vector _Y = {Vi},
i=1,2,3and g represents the deviatoric stress tensor § = [Sij]’ i,j=1,2, 3.
(Note: The stress tensor is computed using the algebraic equation 4.8). In
(4.16), we have assumed for simplicity and for computational .convenieuce, the

same type (linear, quadratic, or cubic) of approximation for all the variables.

Upon substitution and applymg the Galerkin technique, we obtain for the

conservation equations

. B P
[Ars] .{ps§ + [B__ ;psf = 0, (4.17)
. r
[Am] {st + By ;Ys’ . :gr; (4.18)
| g [
[Ars] :Es; + Brsj !Esf = :Dr}l (4.19)

forr,s=1,2,...,n, where the superposed dot indicates partial differentiation

with respect to time, t, and

=_/;_ NN, d¥, B__ =L [@NrNs-!-vi r

[c.] = [er]" fN 5% % +FJ}dV

i

N

4-6
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and

d¥

f N

--—-(0‘ v)+Fv

l

for i,j = 1,2 and 3. The last two expressions in alternate forms can be re-

written using Green s theorem,

o

ON
hy
Cp = f (N, T;) dS +f T Oyt N, d¥
S.z :‘IJQL 1
8N
* D = f (N T.v.)dS+f N F, - —=X o..)v.d¥
r g rojoy o T o 0% g )
S ¥

@ !

Equations (4.17) through (4.19) are the finite elemént analog of the conservation

L)
]

equations.

The finite element analog for the deviatoric stresses can be obtained in

the similar way. Fo";' instance, witﬁ Eq. (4.9b), we have

A, {8 b+ B IS} - Q). (4.20)

forr,s =1,2,...,n. Here
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B
- rs

S | aN o
= [ lepy BN N +v. N —Slav, i=1,23,
P r S .-

K \/-J—- 1_r6xi

2

a¥, k,4,m=1,2,3

. Lo
Qk! - /Nr lz-'“' dkl Skm wm£+srn£ Yrem
¥V

If the viscoplastic term is retained on the right hand side, then

BNS £
B = fViNrax.l & |
.V
énd
S
T N {epld, -yoE) =Ll -5 w +S _w law
Q]d - r kg -~ V9 5 km “mlf mf “km
* V72

2

The conservation equations and constitutive equations thus formulated will
be solved iteratively. The iterative procedures start with solution at previous

time step and proceed as follows:

1. Solve the conservation equations, Eqs. (4.17) through (4.19), to predict
the field variables (p, e, u, v, and w) for next time step.

2. Compute pressure using appropriate equation of state.

3. Solve the constitutive equations (4.20) to predict the deviatoric stresses
for the same time step.

4, Use results obtained in Steps 2 and 3 and update the stress field.

5. The above steps are to be repeated until a prescribed convergence
criterion is met. If so, proceed to next time step. :
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4.2,2 The Least Squares Approa.ch

The possibility of util‘izing the-concepf of least squares to both space
and time has also been explored. To do this we write the equations to be |

‘solved in a symbolic form

0O+AQ=1L (4.21)

in which Q represents the unknown function considered, L denotes the corre-

sponding terms on the right-hand side, and A is defined as

A=0 + v

)
K T (4.22)

For a one-step scheme, the solution can be assumed in the following form

Q= N, [(At—t) Qi(n) + ot Qi(n“)]/At ‘ (4.23)

Again, N s represent the space dependent shape functions, an) and Q.l(IH b

(n+1)

are the unknown at nodal points for time cqual to t( n) and t , respecctively,

with 0 < t < At.

Upon substituting Eq.(4.23) into (4.21) withA.1 denoting AN, the residual

is obtained as

1

_ (n) ., 1 (n+1)
R = — [-1\1i+(At-t)Ai} Q7+ xp (N +tA)Q - L

from which the weighting function can be obtained by evaluating the partial

derivatives of R with respect to each Q§n+1). Finally, the system of algebraic

equations is obtained by setting

”——m R d¥ dt = p (4.24)

4-9
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* with respect to time explicitly.

For instance, if A and L are both assumed to be constant in the time

1nterva.l and 1ndependent of the unknowns Q(n+1). Then the we1ght1ng function is

R _ 1
o, (AFD) T A ( + tay)
h 8

The corresponding system of algebraic equations, with the time integration

carried out, finally becomes
K..Q =1,. + K Q (n) .
1y i ik Tk (4.25)

where

2
f NN, +A N, +AN)A +(AiAj)At i
¥

2 3
L Af A 2 (n)
s = At N. + - n
1 i 2. L Ak Qk dv
¥V .
or, equivalently,
ij 495 = Lj (4.25a)
in which AQ. is the increment of the unknown function at node s
aq; = q, (n+1) . (n) - (2.24)
) J

4.3 ISOPARAMETRIC ELEMENTS AND NUMERICAL INTEGRATION

As is seen, the use of finite elements discretizes a continuum problem
and establishes a system of algebraic equations, whose coefficients are ex-

pressed in terms of the products of element shape functions. The choice of
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@
element type in finite element analysis is. usually dictated by considerations
of accuracy, computational efficiency, and the specific problem under study.
Clough [28] has shown that for three-dimensional finite element analysis, the
""serendipity'' elements with isoparametric formulatioﬁ are superior to other
solid elements with respect to the above cons1derat1ons especially in the
present prol’jem where an adequate representation of the geometry is essential.
The té_ljm "‘isoparametnc“ means that the same shape functions are used to _
define both the géometry and the unknown function. In the present study, use
| will be made of 'the‘linear, quadratic, and cubic elements of the ''serendipity"
famiiy. After performing certain"t(ransformation (mapping), these brick-type

elements will deform to yield curved surfaces. The following is a description

of these elements. -.

In the '""serendipity'’ brick elément, most of the nodes are located on ex-
ternal edges. In fact, the 1inear,l quadratic, and cubic elements contain no
internal nodes at all. The corresponding shape functions are listed below
using the notation of Zienkiewicz [29] .

Y !
& o
Let . ' ¥

. £ =t n =7]Tliand§o:t"§i

O. 1 o]

where (E, nm, §) are the local coordinates and (§i. ;s §.i) denote the coordi-

nates of nodal points of the cube (see Fig.4-1).

Linear Element (8 nodes)

The shape functions in this case are defined by

e

* N, = %(1+€0)(1+__,“o)(1+ £ i=12,....,8

1

2
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(1,1, -1)
a. Linear Element

1)

(1,1, -1)
bh. Quadratic Element

(-1, -1,
!
|
(1, -1, 1) o ?0—
|
¢ /
£ |
¢ A
_®T-1,-1,-1)
-
«_ o -
(1,-1,-1) (1, 1, -1)

c. Cubic Element

Fig.4-1 - Location of Nodal Points in Three-Dimensional Elements

4-12
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Quadratic Element (20 nodes)

For corner nodes

1 R
N, =3 (1+£ )1+n )1 +Lo)(§_o t g+t -2)
Typical mid-side node

€i~=0' T]iziI: g-i:il

1 2
N, =g(1-£90+n)(Q+1L)
Cubic Element (32 nodes)

For corner nodes

1
N, = gg(L+ & )1+ n )1+ ) [9(§2+ n?+¢?) - 19]
Typical side node

- .!'_ —_ —
§i-_t3,"qi—+l, Ei—+l
N. =

9 2
P T e U -E90+ 9% )1+ )1+ L)

Numerical Integration

In_ finite element analysis, the matrices defining element properties,
e.g., stiffness, etc., must be found. These will be of the form

I = ff [G(x,y,z)] dx dydz

in which the expression G depends on the equation being solved and the shapc

(4.26)

functions Ni and/or their derivatives with respect to the global coordinate
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system (x,v¥,2z). As is seen earlier, the shape functions are written in the
local coprdinates (€, n,0); therefore certain transformations must be per-.

-.formed so that Eq.(4.26) can be evaluated in the local coordinate system.

First, the expression G(x,vy, z), which .involves shape functions N. and
.their derivatives in the global coordinate system (x, v, z) must be transformed
1nto those in the local coordinate system (g n, I;) When isoparametric formu-

lation is used, the relationship between global coordinates and local coordinates

is defined by

x::Nl (gsn’é) xi

y=N, (§,1,8) y; (sum on i) | (4.27)

and )
Z :Nj. (grﬂré) zi

in which Ni are the shape functions as defined before and X, Yir 2 represent
the global nodal coordinates. By this transformation, the originally right
prism in the (§, n,{) space will become distorted in the (x,y, z) space. Now,
since the shape functions are defined locally in finite element analysis, no
transformation is necessary. However, the derivatives of shape functions

with respect to (x,V, z) must be transformed into the local coordinate system.

This can be done as follows.

Using the chain rule, one has

’ O N; [ax 2y 9z O N; Oy
5E 5E 9t 5E 5% 5%
NV fex ey 2| PN [ i
9n 9n 9n 9 Oy ] Oy
ON, ax oy 8z 9Ny oN,
¢ al X4 a?;,J 9z ar

4-14
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-

where IJ] is the Jacobian matrix. Therefore, one obtains

' O N,
i

N,

dx 9t -
O N, - O N,
i - I3 -1 i
Oy [ ] on
9N, IN..
i K i
9z 3L,

The Jacoblan matmx [ ] and its inverse, in turn, can be determined {rom

(4. 28)

More expligitly, the Jacobjan matrix becomes

ﬂ_.
— I I
aNl dNa' XY %
5E 0L
I L | ,
l ] = v Ia 2 Y2 %2 (4.28)
|‘ '
Lo, 8NZJ

and its inverse can })e dete rmined,',,s'ubsequently.
. . "
Secondly, a twansformation for the volume element must also be done,
that is

liv."

(4.29

, dxdydz = da {J] at dndt

aBy combining (4.28) and (4. 29‘), one finally obtains, in place of (4.26),
the fqllowmg integral form

L 111
) _ ol t
1 - f / f .[G(é. n, ;)] dt dn dt

-1 -1 -1

(4.30)
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Thus the integration is carried out within the right prism and not in the

combplicated distorted shape.

‘While the limits of the integration are simple in (4.30),unfortunately the
explicit form of (G) is not. Therefore numerical integration usually has to be

resorted to. Essentially, (4.30) is approximated by the following form:

n n n N 9 R
I =ZZZ Wi WW [c- (gi,nj, gm)J (4.30a)

i=lj=lm=1

In the above, Wi Wj and w__ are the weighting coefficients with G evaluated
at the point (§ i’ 'qj, Lm). Herein, for simplicity, the number of integrating
points in each direction was assumed to be the same. The numerical scheme
presently used is the Gaussian quadrature, of which the points for evaluating
G and hence the corresponding weights, are preselected to yield higher accu-
racy with a fixed number of integration points (see Conte, [30]). Of course,
within the isoparametric family, exact numerical Gaussian quadratures can

be obtained if a sufficient number of points is used.

The surface integrals can be expressed in a similar form

I = f/[H(x,y,z)] ds (4.31)
S

in which H(x, vy, z) is obtained from the shape functions and/or their derivatives
with respect to the global coordinate system (x,y, z) and S is a curved surface
in space. Since the integrand is usually very complicated, expression (4.31)

will be evaluated by numerical integration.
First, the expression H (x,y, z) must be expressed in terms of the local

coordinates (§, n,0), analogous to the volume integrals, and to be evaluated

on the appropriate surface. Second, a transformation for the area element

4-16
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must be done so that the integratiori is performed on the surface defined 'by_
two of the local cooxfdinétes. For instance, the area element on a surface

where U is cohsfaﬁt can be written as
dS = det[J] d§ dn = (4.32)

in which [3] is the modified Jacobian matrix evaluated on the surface con-

sidered. The matrix, in turn, is defined as -

(ax oy 0s |
9t 9¢ 9¢
. 3x 8 3
I3 = X 7y 7z 4.33
[’ 9n dn n ( )
) 9 8
57/t sE/t st/

with

-V G

The corresponding surface integral, througa the above transformations,

11
I = ff [F(. 7] dtdq (4.54)

-1 -1

thus becomes

Finally by using Gaussian quadrature, the surface integral is approximated

by the following summation

n n .
I= 3 3w w, [He,, n;]] (4.34a)

i=l j=1

in which H is evaluated at the Gaussian points (gi, nj), wi-,wj are the corre-
sponding weighting coefficients, and n denotes the total number of Gaussian

points to be used in each direction.
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4.4 TIME MARCHING SCHEMES

As is seen previously, the Galerkin approach results in a 'system of
ordinary differential equations with respect to time (see Egs. (4.17) through
(4.20)). These equations involve time derivatives of the primary conservative
variables, p, Vi’ E and Sij’ thus certain scheme must be chosen to integrate.

the system of equations in time to obtain the time history of the solution.

As is seen, the equations being considered are all in the same form as
a. 6.+ B.. 6. = 7. 4.35
1) ¢J BlJ ¢J ¥ ( -"f)

One crucial point for the success of the present study is the choice of suitable
time integration scheme to solve (4.35). There are numerous schemes avail-
able; however, for the present problem, it is highly desirable to adopt some
technique which is simple to apply, needs less storage locations, and should

be numerically stable. We have investigated two such schemes as described:"

in the following.

Implicit Finite Difference Scheme: In this scheme, use is made of the

two consecutive time step solutions, ¢§n) and ¢§n+1) , for time at nAt and

(n+1)At. In particular, we assume

: (n+l) (n))
¢ (¢j ¢ )/ ot (4.36)
and
6. = oo™t L (1 ) o) (4.37)
j j j
0<o<1
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Upon substituting (4.36) and (4.37) into (4.35) and rearranging, we
finally obtain

Q.. . a.. '
i (n+1) _ i - (n)
(737:L ¥ eBiJ‘) ¢ = v t|a - (1-9)By|dy T (438

Equation (4,38) is simple to apply and needs only one previous time
step solution. Also, it can be shown for linear problems that the scheme is
unconditionally stable for 1/2 <6 <1 (see [31] ), thus one can avoid all
stability worries and choose a value of At based solely on such considera-
tions as desired accuracy. The above scheme, however, is only conditionally
stable for 0 <6 < 1/2 and hence is not recommended for the problem pres-

ently studied.

Galerkin Process in Time: Alternatively, the Galerkin weighted

residual process in time can also be applied to matrix equation (4.35) to
obtain a recurrence relationship similar to (4.38). This approach allows

a more comprehensive treatment and indeed possesses all the possible
merits of the diiferent variational processes supggested by Wilson and
Nickell [32] . The recurrence could be written for several intervals simul-
taneously thus necessitating more equations to be solved at cach step but
resulting in an improved accuracy and stability, thus allowing a larger

time step to be used.

Generally, within the interval we shall assume an interpolated form
for each of the time dependent unknowns ¢j defined by its values at several

time interwvals

¢ = N(i)(t)¢§i) (sum on i) (4.39)

in which N(l)(t) are appropriate shape functions defined continuously within

the interval,

For instance, if a linear interpolation is assumed, (4.39) can be

written explicitly for the time interval (0 <t < At) as

4-19
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¢, = (L - az) o™ 4 L g atD) | (4.40)

From the above, the time deri-.vativ.e can be readily obtained as
oL Ly g, (1) 4D |

As the previéus step solution ¢(n) is known, only one weighted residual substi-
tution needs to be evaluated. More specifically, Eqs.(4.40) and (4.41) are first
substituted into (4.35), then the resulti;g' residual is multiplied by t/At, and the
weighted residual is infegrated over the time interval (0 <t < At). We obtain

finally

%i o, 2 +1 2 At % 1, )0
(Kil ¥ E%) 65710 - (At)zjf vitdt +\ e - 3845) ¢ (4.42)

It is seen that Eqgs. (4.38) and (4.42) are similar and they become identical
when 0 is set equal to 2/3 and Y is independent of time. The two approaches,
however, are based on entirely different concepts. In the finite difference
scheme time is discretized and Eq. (4.35) is solved directly; on the other hand,
in the Galerkin approach the nodal unknowns are assumed to be continuosu func-
tions of time and Eq. (4.35) is solved by some average process in time. The
latter approach is therefore more general and can be conveniently extended to
multiple time step procedures and higher order approximations in time. The
schemes discussed above represent only the simplest recurrence relations
available and, of course, schemes of higher order approximation can be readily

incorporated if circumstances require.

4-20
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5. IMPROVED FINITE ELEMENT CODE BASED
ON EULERIAN DESCRIPTION .

When shocks, c_ompressibn'waves or some other type of discontinuities
occur in the material, the gradients of the dependent variables in the governing
equations become very large in -the'nei_ghborhoods of discontinuities, These
large gradients lead the effective diffusion terms in the equations to be nega-
tive in some regions, and cause numerical instabilities in the interaction pro-
cess during the numerical computations, if conventional methods described in
the previous section are used. To overcome these difficulties, an alternative

finite element formulation was investigated.

The present formulation consists of two primary portions. Firstly, the
finite element formulation is constructed based on the theorem of weak solu-
tions, so that the jump conditions can be satisfied automatically to take care
of shock propagations. Secondly, a generalized two-step, time-splitting, shock
smearing scheme has been developed and implemented. The scheme so con-
structed has a capability to remedy the spurious oscillations arising due to

numetrical instabilities.

In subsection 5.1, a general discussion on the theorem of weak solutions
will be presented without proof. The governing equations in conservation form
and the finite element analog of these equations, are presented in the sub-
sequent subsection. The formulation of a two-step, time-splitting scheme is
discussed in subsection 5.3. In order to predict the crater size and a numecrical
solution with adequate accuracy, the free surface of the projectile and target
system must be treated with care. Discussion on this aspect is given in the

last subsection.
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5.1 ON THE THEOREM OF WEAK SOLUTIODIS

The results from the theorem of wéak solutions have been frequently
_ appﬂeél in developing finite difference schemes for solving first order, non-
linear hyperbolic equations. In most of these schemes, the advantages of the
resulting forms deduced from the theorm are not fully utilized, since they are
always 1n the integral form. This fact,“however, can be implemented in a

simple way into a finite element scheme, and the advantages can be fully

utilized.

Various works on {inite difference have indicated that, when the results
of the theorem of weak solutions are to be used in the numerical scheme, the
governing equations need to be converted into a conservation form (cf. Ritchrayer
and Morton [31]). In what follows, therefore, we restrict ourselves in consider-
ing the system of hyperbolic equations in conservation form. It is obvious that
all the conservation equations can be written in this form. The constitutive
equations, however, are not in the conservation form but can be recast into

such form as shown in subsection 5.2.

5.1.1 Theorem of Weak Solutions for First Order Quasilinear Equations

Consider a Cauchy problem of a system of quasilinear hyperbolic equa-

tions

9 L9 5 123 (5.1)

on a cylinder R = 2 (x) x T (t), where x = (XI’XZ’XB)’ Fk = Fk(x,t, $), and G -

G (x,t, 9). A class of piecewise smooth and piecewise continuous, vector val-

ued functions ¢ in R for t > 0 are called the weak solutions of (5.1) if the [ol-

lowing relation is satisfied.

. k :
9¢ , BF B
J[/' §_<5T+a—xk—>d§2dt _f t GdNdt (5.2)
R

R



o0 . , o .
where [ € C with compact support on R, i.e., { is any continuously &

differentiable function that vanishés .o_n a'R,. the l:%unda.ry of R, ¥

Lax [33], Oleinik [34] et al., have shown tHat, if the following conditions
are satisfied:

¥

8 - ¥ ' C

1. For each k=1, 2, 3,Fk has a continuqgus partial derivative
k
- with respect to ¢, and %1% is boundéd for (x,t) CR; ¢
o ® . s b ‘
“‘ . 2 k 2 k " N
2. For bounded o, 0_F Q, 9_E are cbntinuous, s ¥
. o¢ 8x 8¢2 o § _‘
a . v

w1 - i
',‘ and _a__g__ 2 0: :I N .-.l_
¥ 8" ' |

s 1o . ' i

- 3. The funqt1on G(x,t, d)) has a continuous partial derivative
. with res@ect to ¢.

°
1 .
The generalized solfition of Eq. (5.1:)i with a piecev?i.,se continuouss'i:nitial condition
is unique, and satisﬁges Eq.(5.2). .. B

. .

The proof of tﬁe theorem can be found in the aforementioned references,
and wjill not be presented here. Hdwever we shall discuss in what follows

some immediate cofsequences of the theorem d1rect1y related to our proposed
form&lation. 3
]

5.1.2 Jump Condition

Following the Green's theorem, Eq. (5.2) can be deduced to a form

V)

TS
@
>3

©
D=3
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- _/:/5?:‘_ [;_(x,t)¢(x,t)] df2 dt + /f QFknk ds dt
. R ' '

2 xT

- ff;c dQ dt (5.3)
R ..

. th
where n, is the k™" component of the outward unit normal vector on 95, the

boundary of .

Observe now the integrals

I, = ffﬁ— [t (x,t) ¢(x,t)] ddt (5.4)
R

for some tle T, xeﬁ; and

Is =//§(x,t)Fk(x,t) ny dsdt (5.5)

o2 xT

for all xeéQ, and te T. Since { (x,t) is piecewise continuous function with
compact support in R, it is obvious that IS = 0 if there is no discontinuity in

R. Otherwise, we may deduce without difficulty the jump of the function Fk

across the discontinuity, i.e.,

I =ff ¢ [[Fk]] n, dSdt (5.6)

a2 xT
s

where E)QS is the surface of the shock layer, [[1:1"]] denotes the jump of Fk,

the kth component of F, across the shock.
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For the integral Iv' if th_ere_ is no discontinuity on R, Eq. (5.4) can be
reddced to ' '

o IV =f ¢ (x,t) ¢ (x,t). an -fg (X,O)‘¢(#_;'_o) ao
® ‘ % o l'."_‘

Acr8ss a shock, however, the Leibnitz's rule yields e

I, = f L (x,t) ¢(x,t) AQ -f t(x, 0)¢¢ (x,0) A
Q’T L Q .i""-a

I‘,' 4 Ry

o [ .
2 g i

+fi§(x1,§) ¢ (x)38) / cg (n,€) dS () d
T ta0 (1) :

-f,; (x,, &) ¢ (x, BE) f cg (n, &) dS (m) dt

TS o 00 (t) T

] @
whene the subscripts 1, 2 denote the values at the upstream and downstream

-

of the shock, respeltively. Here, the speed of sound is defined as
®

'
e

s aSk

Co 1758 ®k| -

©

The last two terms in the above integral is no more than the jump of ¢, i.e.,
i

g
. : ®
Ivzfg(x,t)¢(x,t)dQ-f§(x,n‘)#?(X,o) dQ -
- Q Q '
& ® 5-5 o e
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* / L(x,t)c (x,t) [4] dsat | (5.7)
BQ_SXT '

Since the entropy condition requires that

cg [91- [F*] n =0 (5.8)

The substitution of (5.6) and (5.7) into (5.3) then yields *

ffw g—%+Fka—8-X€‘;)det

R

= -/ux,o)mx,o) o fj[ { G dQat (5.9)
Q R

This consequence implies that (5.9) satisfies the jump condition (5.8) auto-

matically.

5.2 FINITE ELEMENT ANALOGUE OF WEAK SOLUTIONS

Recall that we are considering a system of equations

k
8¢ . 9F |

ot Bxk =G (5.1)
where Fk = Fk (x,t,9), k=1,2,3and G = G (x,t, ¢). In this section, we shall
formulate the finite element analog of equations in the form of (5.1). To do
this, we have to write the conservation equations and the constitutive equations

for impact problems in the above form.

5-6
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5.2.1 Governing Equations in Conscrvation Form

It is obvious that the conservation equatiofrs (4.1) through#{4.3) are in
the conservation form. The constitutive equations (4.9), howevér, are not in

the form of (5.1). Therefoi-é, we recast the constitutive equations as

8S, . 8 (v, S;.) S.. \ °
) + ______fl_g: @S + Zu_ dl - ')’CI’ I
ot Bxk ' 7
) "u3 \} 2 i

- S. w + S _.w g
1m mJ mj. 1m i b Sh
ﬂ"

o ,'E

‘é’b
where @ = div y. Here, an add1t1bnal term OS appears on thé’right-hand

side, which is considered as the forc1ng term.

. Thus, for high velocity impact problems, the governing equations can
[ ' p

be written in the cohservation form (5.1) with
» .

3 ] w
®
hé
k2 [ € A ;
& p 1}
vV, 3 =1,2,3
. J Y
o =4 >
F * =2 lnja': 112!3 ‘3
? 1)
. e .
r ) ' o
vkp
k- VkV.-(u'J.k,J 1,2,3
F = E ¥ s k,£=1.2,3
VieE -0 Yy
LVkSu, i,j=1,2,3 ) &
y
(5]
3
@ & 5 5-7 & ©
8 & ¢
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[ o
Fj;jl;l,z,s
G =4 Fj_vs;j=l,2,3 , (5.10)
[(©® - 2uyd /\[ To) S;5 + 24 dy
. -S._w . +S_ .o 1:i,j,m=1,2,3) "
im mj mj im '

5.2.2 Finite Element Formulation

Suppose that the discrete approximation is constructed by appropriate
interpolation functions in each element, and take ¢ (x,t) defined in (5.9) to be
the weighting function with compact support in the cylinder AR = Q% T. Here,
Q is the volume of an element e, T = [O,At] and At is the time step in the
time-split scheme. In order to utilize integral relation (5.9) to minimize the

error, we have to approximate the (weighting) function { by the shape function

at the previous time step, i.e.,

_ t - .
L. =(1-x)N, r=1,2,...m (5.11)

where m is the number of nodes in the element e. Also, approximate the

solution to (5.1) as

$=N_ _[(1-&)¢(S.n)+g—t¢gn+”}, s=1,....,m (5.12)

5-8
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With these expressions, we obtain a matrix equation in the form of

| At 1l | 2At o
([Ars] - At [Brs_])‘lqb(sm | - ([_Ars] ¥ —3i[Brs]> gd,gn)’) + At }Cri (5.13)
where
A_ =f N_N_d¥
AL
oN
Brs =,/ Vk ax: Nst
3 ®
oN
k }
o, =f |n 7w, + NG| av ! (5.14)
W .

Here, the vector H=F - ¢v.

5.2.3 Remarks

Instead of using Eq.(5.11), we may as well as approximate the weighting

function by gr = ZE‘E Nr’ r=1,2,...,m. Inthis case, however, tlge integral

e
formula {(5.3) instead of (5.9) has to be used. Mathematically, these two form-

ulations could achieve the same accuracy and possess a similar stability char-
acter. Nevertheless, the surface integrals appearing in (5.3) would affect the

numerical computations, as will be shown in the numerical experiments.

This argument also explains the difficulties encountered in the conven-
tional Galerkin method. It is essential that, after integration by parts, the
Galerkin's formulation as shown in (4.42) is similar to the matrix equation
(5.13). The only difference between (4.42) and (5.13) is their relaxation factors,
i.e., a coefficient 2/3 in (4.42) is replaced in (5.13) by a factor -1/3. However,
the forcing vector }Cr: in (4.42) c>ontains surface integrals as in the afore-

mentioned case when t_,r = é— Nr and (5.3) are used. Moreover, matrix

5-9
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equation (4.42) does not satisfy the jump conditions. Therefore, the con-
ventional Galerkin formulation is considered less significant for solving

hyperbolic equations. -

It is important to note that, however, neither the use of Lr = -Alt‘ Nr nor

Lr = (1 - Ktt_\' Nr can always represent accurately the class of test functions
7/

having compact support on R if the conventional shape functions are used.

These known classes of shape functions may not vanish or equal ta a same
constant on all boundaries of the cylinder R, although we have presumed

that they do as required by the theorem of weak solutions. The error arises .
from this aspect, nevertheless, can be reduced easily by treating the boundary
conditions with care during the numerical computations., Meanwhile, constructing

a new class of shape functions does not seem to be practical due to the difficulties

involved.

5.3 GENERAILIZED TWO-STEP, TIME-SPLITTING SCHEME

It is well known that the finite element method with conventional assembly
techniques is equivalent to the centered finite difference scheme. When the
method is applied to solve flow problems containing shock waves, numerical
instabilities generally arise primarily due to the lack of dissipative terms.

In the finite difference approach, this difficulty can be overcome by either one,

or a combination of the following schemes:

Introducing artificial viscosity,

Replacing the center difference by a noncocentric
difference scheme,

e Utilizing the two-step finite-difference scheme, or

e Introducing Lax-Wendroff's second order correction,
etc.

All of the above variations except the second have been adopted in the current

finite element codes to solve the impact problem. It is found that the last tw:



BN |

& LMSC-HREC TR D390900
[

approaches yielded promising results. However, due to the excessive compu-
tation time needed with the Lax-Wendroff second order scheme, we have

decided to adopt the two-step, time-splitting procedure. .
‘Consider a non-linear matrix equation

- (+IN | ' (r)
JAL] - a BJ[B,,D {¢, } = ([A,,] +at(1-9) [B"]){qbs }
| ¥ At {cr} . g (5.14)
where [Ars], [Br;] are square matrices, {Cr} is a column matrix, and ¢ (n)

denotes the solutiom of ¢ at the nth time step. In the present case, the factor
. g L
8 = 1/3, the matricé‘s .

“l o 3 ot

¢ ] ' r,s =12, !
' BNr
- Brs =f ‘ o, Ng Yk d?g .
Q . .
and the vector
9 F x v
C = ——— H +NrG d§2

e T Kk

Q a

where Hk = Fk - vk¢.

Following the general approach of two-step procedure (see Richtmyer
and Morton [31]), the solution of (5.14) can be solved by the following steps:

3

([Ars] -a At 8 [B:'r;)])z;fﬁp—a)l N ([Ars]"'aAt (1-8) [BE-I;)]) -‘4’5:):*3“ $C (n), | (5.15)

| l Ur

(8]

R

@ @ §
5-11 . .
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(11 a0 [:s;:*”])‘qsgéﬂ)f = ([Aggl+at (1-9) [Egn])%,b;m}w (GH] (s 1)

e

where N
(n+l) _ (n) =(n+a)
Brs = a Brs t(1-0) Brs_

~(n+l) _ (n) —(n+a)
C, = aGC V+(1-a)C}

Here a is a relaxation factor, and the constant a may be an integer or a frac -
tion multiplier of the time step. As will be seen in Section 6, the numerical '
computations become more stable as the parameter a increases. The mathe-.
matical aspect of the present formulation is yet to be studied in depth. In |
particular, the relation between a and the rdtio of the time step size and the
element size must be determined in order to obtain an optimal accuracy for

the general impact problems.

5.4 FREE SURFACE CONSIDERATIONS

In order to predict the crater size and produce a numerical solution
with adequate accuracy, the free surface of the projectile and target system
must be treated with care. Essentially, a free surface has zero pressure,
but with its geometric shape changing with timme. In the present formulation,
the imposition of zero pressure on the free surface could be carried out con-
veniently by proper consideration of the boundary integrals in the resulting
algebraic equations; however, the adjustment of the free surface location is
somewhat more complicated. There are several ways of handling the free
surface problem. In this subsection, two approaches which are believed to
be suitable for the present technique will be discussed. One of the approaches
is to consider the equation governing the free surface motion as.a part of the
governing equations. The other one is simply to compute the solution on the

free surface by an extrapolation procedure.
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5.4.1 Method Accomxhodatir_xg the Free Surface Equatioh' :

Consider the free. surface in Fig. 5-1, which separatés the interior of
the target from the void region, and let h(x,y,t) be the vertical distance from
the x-y plane to the free surface. An equation governing the free surface

movement can be derived as follows.

In Fig.5-2, let A and B be two adjacent points on the free surface at
time, t, with vertical distance _defined by h(x,vy,t) and h(x + ulAt, y + vAt, t)
respectively. After At, point A moves to point A' whose vertical distance is

h(x+uAt, y + vAt, t+At). From the figure, we have

Ah = h(x+ulAt, y+vAt, t+At) - h(x + UAt, v+ VAL, t)

h(x+ult, y+VAt, t+At) - h(x,y,t) + h(x,y,t) - h(x +uAt, y +vAt, t)

]
n

wAt -h(x+uAt, y+vAt, t) + h(x,vy,t)

Dividing through by At and letting At —e 0, we have
' 1 '

8h _ o _, oh __2h (5.17)

3t U 3% "V 5y ;

or equivalently, with first order approximation

_ 8h _ oh
Ah = (w-u Freiiald BY)At (5.18)

As mentioned above, to analyze the free surface motion, we consider
Eq. (5.17) as a part of the governing equations, and is computed successively
with the conservation equations, the constitutive equations, and the equation .
of state. Equation (5.17);must be solved to find h, or equivalently Ah, at
each node. Here we confine our attéention only to the vertical movement of

the free surface.

(¢ 8 513
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T> X

Fig, 5-1 - Target-Projectile Configuration with Target Free
Surface Defined by h(x, y, t)

‘ | uAt -—
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The advantage of this approach is its formulation can be incorporated
into the coupled Eulerian-Lagrangian code directly as part of the code in the
rezoning process. ' However, since Eq.(5.17) has the similar form as the
governing equati'ons‘,' similar'probléms on numerical insté.b‘i]ity may arise
during the complitations. This problem remains to be 'J;n_ves_tigated in future

studies.

5.4.2 Method of Extrapolation

Recently, an improved numerical finite element procedure is proposed
by France [35]. The approach is applied to deal with two-dimensional steady
state free surface problems. As an alternative to adjust the mesh in order
to accommodate the movement and subsequent location of the free surface as
in the previous method, extrapolation is used in conjunction with a fixed finitc
element grid. The exact position of the free surface is determined when the

imposed boundary conditions are satisfied.

The extension of this approach into three-dimensional problems is
straight-forward. The following illustrates the procedure with a linear brick
type element. A typical element in the physical domain with the interface
passing through is depicted in Fig.5-3. Here the shaded area represents the
free surface which cuts the edges of the element at a,b,c,d. The nodal points

of the element are denoted by 1,2, .., 8.

Let Y (x,t) be a function whose value on the free surface is specified.

At each time step, we assume that the function can be approximated as
¢=Nr¢ , r=1,2,..,m (5.19)
Then, the value of ¢ at the point a can be expressed as

b= 5 [(+h )4, +(1-h ), | (5.20)
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where (1, -1,h ) is the location of a based on the local coordmate system.

Thus, the nodal value of 41 at node 5 can be obtamed as
= [Zan-(l -ha)¢1]/(1+ha) . | (5.21)

The values of Y at nodes 6, 7 and 8 can be obtained in the similar way. The°
matrix equation for the entire boundary surface is thus generated in terms of
the values at points of the free surface cutting the edges of all ""boundary' ele-
ments. But all values of § at ""boundary'" nodes are computed from the previous,
time step, and y on a,b,c,... are all specified. Hence, the shape of the free

.surface can be obtained by solving this matrix equation.

It is seen that this approach is simpler to formulate compared to the
‘previous one, and the computations involve only algebraic equations. Since
the element geometry is !'fixed", it is only necessary to formulate the governing
matrix equation for the initial cycle. These facts can naturally save computation

time considerably.

Element Boundary
7 Surface

N

Free Surface

> Y

Fig.5-3 - Free Surface Passing Through a Typical Element
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5.5 SCHEME FOR SOLVING A LARGE SYSTEM OF EQUATIONS . D

As is seen now, the numerical solution of the subject proble:ﬁ must deal
with a system of governing partial differential equatidns. With the 'rnethods.
proposed herein, these equations are solved separately but coupled through
iterations, thus reducing computer storage requirements to a great extent.
However, for a general three-dimensional problem even with only one equétion
to solve, a solution with adequate accuracy will generally involve a large number
of unknown parameters and hence result in a large system of algebraic equations.
Therefore an effective scheme for solving such system of equations is obviously

needed.

The various methods to solve a large system of algebraic equations can
be classified either as a direct elimination process or as an indirect iterative
process. The direct elimination process solves the system at a minimum num-
ber of arithmetic operations while storage is at a maximum. For a large scale
problem, even with the banded nature of the matrix taken into consideration, the
storage can still easily®excecd the core memory available on most existing
computers. Thus, any large system equation solver would have to make pro-
vision for efficient transfer of data between core memory and auxiliary memory.
The iterative process, on the other hand, requires only a minimum storage while
the number of arithmetic operations, due to the iterative nature, is not definite.
For matrix with diagonal dominance, the convergence is fast, but for any other

matrix the convergence is usually slow or even not convergent at all.

Traditionally, the finite element workers have favored the direct elimi-
nation process for the following reason. The structural problems are mostly
linear, or in case of nonlinear problems the nonlinear terms can conveniently
be moved to the right-hand side with the load vector. Thus, for a given struc-
ture, the decomposed coefficient matrix is invariant and the most time con-
suming decomposition process needs only be performed once and for all. This
decomposed matrix can then be used over and over to obtain a new solution

corresponding to a new loading at a later time. It can also be used to obtain
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an updated solution in ‘an iterative scheme for nonlinear problems. ‘This
resolving capability of the direct elimination process makes it extremely

attractive.

Efforts have also been concentrated on storing only the nonzero coeffi-
cients together with an auxiliary pointer matrix to record their locations.
For input purposes, this scheme certainly saves a lot of storage. Unfortunately,
nonzero coefficients are generated within the band in the decomposition process.
Thus, the decomposed matrix would be relatively dense and it appears that there

can be no saving on storage at output. In addition, some elaborate scheme is

L
‘e

required to keep track of these generated nonzero coefficients.

At this time, no definite conclusion has yet been reached whether to use
the direct elimination process or the iterative process. It appears that storing
the entire band matrix in core memory or auxiliary memory, and using the
.direct elimination process would be a good approach. Recently, two computer
programs based on such an approach were published. The program due to
Wilson et al. [36] was written for a positive definite symmetrical band matrix,
while the program by Vendhan et al. [ 37] can take either symmetric or un-
symmetrical band matrix. On the other hand, the iterative process such as
the "' Frontal Solution Technique'" [ 38] is also very attractive for its minimal
storage requirements and consideration of the nbnlinearity of a problem. All

these equation solvers are under study for possible inclusion in the final com-

puter program.
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6. TEST PROBLEMS AND NUMERICAL RESULTS

In this section we discuss, in detail, both the inviscid hydrodynamic

model and hydroelasto-viscoplastic rﬁodel of a one-dimensional impact problem.
Subroutines for numerical evaluation of shape functions, generation of matrix
equations, as well as the equation solver, etc., are tested and debugged by solv-
ing various cases of heat conduction proBlems. The finite element/Galerkin
procedure discussed in Section 4 is employed to solve the problem, and
the details are presented in the Subsection 6.1. In the second subsection,

we shall discuss the inviscid hydrodynamic code in some extent. Included in
the discussions will be the numerical experiments of the given test problems
in impacts, the comparisons between the methods of weighted residuals and
the improved scheme discussed in Section 5, and some related aspects con-
cerning the numerical technique. The hydroelasto-viscoplastic model will be

discussed in the last subsection.

6.1 HEAT CONDUCTION IN SOLIDS

The heat conduction problem was chosen to test and debug a number of
subroutines such as the numerical evaluation of shape functions and their deriv-

atives for various three-dimensional isoparametric elements, assembly routine,

time marching schemes, and equation solver, etc. The problem had been analyzed

rather thoroughly to give us confidence in these subroutines, however, for brevity,

only major results are presented herein.

As is well known, the heat conduction problem is governed by the diffusion

equation in the following form

OT _ o2
5% = . VeT (6.1)
6-1
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',subjected to an initial condition and to a set of boundary conditions that are
admissible to the equation. Note that the variables in (6.1) and in what follows

are all normalized by the characteristic length, time and temperature.

The steady state solution of the problem, i.e., the asymptotic solution

of (6.1) at t —» o, is identical to the solution of Laplace equation:

2 p°T  8°T  8°T _ (6.2)

subject to the same set of boundary conditions of either specifying the temper®
ature, or the normal derivative of the temperature, or a combination of both,

as in the unsteady case. This problem, when cast in a variational form, has

the following integral expression

-

2 2 2
_ (a1 foT 9T
' - fffi[(&) +(57) +(§:)jd’*
V
i /:/‘(qT+%aT2) ds 6.3)
S

It can be shown that, upon minimizing the above integral (i.e., 61 = 0), one will

obtain (6.2) together with the following natural boundary condition,

AT q +taT (6.4)

on
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Standard finite element procedures are then applie_d, based on (6.3) to

obtain a system of algebraic equations in the form: |

Bij TJ. =7y (6.5)
where _ o
V
ffa N, N, ds 6.6)
S
and

Y4 =ff qudS
S

In the above, ﬁij is the influence coefficient matrix, Y5 is the load matrix,
and the repeated index j implies summation from 1 to m, the total number

of unknown parameters. Ni and Ni, « €tc., are the shape functions and their
derivatives, respectively. Since isoparametric elements are used, numerical

integration scheme described previously is used to obtain these matrices.

Two sample problems were chosen to check out the computer codes.
They are the heat conduction in a cube and that in a hollow sphere, for which
analytic solutions are available for comparison purposes (see Carslaw and
Jaeger. [39], pp. 177-179, and pp. 230-231).

6.1.1 Steady State Heat Conduction in a Cube

Let us consider a cube (see Fig.6-1la) defined by

0<x< a, 0_<_y£b, 0<z<c
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subject to the followin'g; boundary conditions

T =-T1- .on_x.= 0
:'I"2 on x = a
T =

0 on other surfaces

The analytic solution in terms of infinite series is

T = 16 & & [Tl sinh {(a-x)+ T, sinh Fx] sin Emt Dry o (ent )72

== 2 2 2 b <
=0 n=0 (2m + 1) (2n + 1) sinh fa

in which

211/2

- ‘[(Zm-i}-al)w]z +[(2n+127r] ‘

= C

For numerical computations, the element mesh shown in Fig. 6-1a is used
together witha =b =c¢ =1, T, =0 and T, = 1. Toimpose the boundary condi-
tions on the surfaces of the cube, the nodal parameters on these surfaces are
set equal to 0.0 or 1.0 accordingly. However, because the temperature is
double -valued along the four edges of the surface x = a, some average scheme
has been adapted to take care of this singular behavior, with the four corner-
node parameters set equal to 1/3 and the remaining nodal parameters oﬁ the
edges set equal to 1/2. An alternate approach to resolve this difficulty is to
use another grid with finer mesh arranged in the aforementioned region. With
the present uniform mesh (two elements in each direction), computations have
been carried out using both the cubic aﬁd quadratic isoparametric elements.
Our results, as shown in Fig.56-2, appear to compare well with the series solu-
tion and the property of symmetry about the y'- and z'-axes was also observed.
Both sets of finite element results show some oscillation about the series solu-
tion, this waviness is believed due to the relatively coarse mesh used and the

singular behavior of the boundary condition alorg the four edges on surface

X = a.
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1.0 —
Series solution (N = 50)
A 'C.ubic'. ‘elements (two in.each
direction) -
0.8 — ' 0] Quadratic elements ({two in

each dire ction)

PN

-0.5 -0.3 -0.1 0.1 0.3 0.5

a. Along x'- axis

b. Along y'- or z'- axis

Fig.6-2 - Comparison of Predicted Temperature Distribution in a Cube
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6.1.2 Steady S_ta_te Heat Conduction in a Hollow Sphere

- @
The hollow sphere is defined by a < r < b; subject to the boundary ‘
conditions B
. T = T1 onr =a
s i
and ..
'I Q ° [y
TszPonr:b Ty ‘ 6
“..’l. - .
The analytic solution is in the following form @
.
" a (b-r) T, + b (r-a) T :
A T - . ]- 2
- N r(b-a) ~

Because the solution is a function of r only, a prism astshown in
Fig.6-1b was taker for computations. The inner and outer radii of the
hollow sphere weré& chosen to be 1.0 and 2.0, respectively. The boundary
conditions imposed?on the prism gre )

T =0.5 onr

1

1.0 .

' T=1.0 onr =2.0
and ' .
] -g—g-‘— = 0 ®n other surfaces

Again, both quadra.tlic and cubic is.oparametric e®ments have b@en used in

the computations, with results shown in Fig.6-3.- As is scen, there exists
excellent agreement between our predicted results and the analytic solution,
even with only one element. Results obtained by using finer meshes are
almost identical to the anal.y'tic solution. The high accuracy achieved by the
present analysis is obviously attgibutable to the ability of isoparametric
elements to represent both the geometry and the solution functidh accurately. @
Also, for the presert problem, thelwell posed boundary éonditions (no singu-
lar behavior) make it easier to obtain an accurate numerical solution with

relatively few elemgnts. g

' 67 | L
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1.0—
0.8
Symboi Elements
T .
O 1
X 2
b .
0.6 D 4
0.4
| l | l |
1.0 1.2 1.4 1.6 1.8 2.0
_ r
a. With Quadratic Isoparametric Elements
1.0~
0.8 —
T Symbol Elements
O 1
0.6 X 2
O 4
0.4 p—
| | | | |
1.0 1.2 1.4 1.6 1.8 2.0

r

b. "With Cubic Isoparametric Elements

Fig.6-3 - Comparison ol Predicted Temperature Distribution in the
Radial Direction of a Hollow Sphere
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6.1.3 Transiént Solution

The time marching schemes discussed in Subsection 4.4 have been tested
numerically for the three-dimensional transient heat conduction problem. The

governing differential equation now has the form

T _ 9°T ,8°T , d°T :
= = et (5.1)

Q

with initial and appropriate boundary conditions. By épplying the Galerkin
technique with respect to the space variables, a system of alpcebraic equa-

tions, with an additional term involving time derivative, is obtained

a..T.+ .. T. = &
ij T Eu j Y; (6.7)
where
a.. =-[[fN. N. dw¥
1] 13
v
B.. :ﬂ (N. N. + N. N. 4 o) dv —ﬂaN.N.dS
1) . LX L X LYy LV LG 1]
v S
and

Yi :_[[q N, ds ) : (6.8)
S

The steady state solution of the hollow-sphere problem was again selccted
as the testing case. The tests include differcnt time marching schemes, size
of time step, various order of elements, and cffects of initial conditions. The
solution is considered as reaching steady state when certain prescribed con-

vergence criterion is satisfied. The one presently usced is that for every

6-9
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undetermined parameter the dlfference between two consecutWe tlme steps
must be less then 10 4. All the testlng cases except one (At = 2. 0 in Fig.6- 4) .
satisfy this criterion in iess than ten t1me steps. Figures 6-4_ through 6-8

show some of the results.

Figure 6-4 shows the temperature history at the point r.-= 1.5 obtained
by the implicit finite difference scheme with 6 = 0.5 (i.e., the Crank-Nicholson
type), using two linear elements. Although the results show some oscillation
about the steady.state so'lutiorll the scheme is obviously stable, regardless of
time step size. The scheme of two-step Galerkin in time (equivalent to 6 =
2/3 in the implicit finite difference scheme) was also tested for the same
problem, with results  shown in Fig.6-5. Oscillation about the steady state
is seen to be reduced significantly with improved convergence rate, thus
demonstrating the merits of the Galerkin process in time. Two aaditional
tests were conducted for cases with quadratic and cubic isoparametric ele-
ments together with two-step Galerkin process in time. The tren_ds. of con-
vergence for these cases are shown in Figs.6-6 and 6-7, respectively. For
this particular problem, no significant difference is observed in the paths of

convergence with various numbers of elements.

Results in Figs.6-5 through 6-7 were obtained by assuming zero solu-
tion throughout the entire field (including those on the boundary) at time t= O.
To see how the initial condition affects the solution path, non-zero boundary
conditions were also applied from the onset (t=0), and results are shown in
Fig.6-8. Some significant disturbance for the first steps is noticed, especially
for cases with a large time step. The disturbance, nevertheless, was quickly

damped out and convergent solution is still attainable.

6.1.4 Radiation Boundary Conditions

Subroutines for the boundary integral involving a curved surface has been
written and was checked by analyzing the problem of heat conduction in a hollow-

sphere subject to ''radiation'' boundary conditions (see [34], p.19). Instead of

6-10
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¢ .

L o | |

0.0 0.05 0.1 0.5 1.0 5.0 10.0

Time, t

Fig.6-4 - Predicted Temperature History of a Typical Point (r = 1.5)
of the Hollow Sphere with Various Time Step Sizes (two linear
elements, Crank-Nicholson in time with 6 = 0.5)
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Lo | e

_ Steady State Solution, T = 5/6
0.8—
0.6 —
0.4 —
0.2 —
0.0 L l ' . , | ,

0.0 0.05 0.1 0.5 . 1.0 5.0 10.0 2

Time, t

Fig.6-5 - Predicted Temperature History at a Typical Point (r = 1.5)
of the Hollow Sphere with Various Time Step Size (two linear

elements, Galerkin in Time)
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-
-

Fs— _.
v
016 — 1 Element
0.4 — | |
-2 or 8 Elements
/ | .
0.2 l °
o .
/ | '
0'00.0 0.4 0.8 1.2 . 1.6 2.0 2.4
Time, t
Fig.6-6 - Predicted Temperature History of a Typical Point (r = 1.5)
of the Hollow Sphere with Various Number of Quadratic
Elements (At = 0.2, Galerkin in Time)
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Steady State Solution, T = 5/6

0.8

0.6 —

|
]
!
|
. !
0.at— |
]
/
!
|
]

2 or 8 Elements

0.2-—-,

0 0.4 0.8 1.2

6 2.0 2.4

Time, t

Fig.6-7 - Predicted Temperature History of a Typical Point (r = 1.5)
of the Hollow Sphere with Various Number of Cublc Elements
(At = 0.2, Galerkin in Time)
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specifying the temperature on the inner and Guter surfaces, the boundary

conditions are now

5 - hl (‘1"1 - T) at r=a
aT _ :
55 " h2 (TZ -T) at r=>b

The above expressions ihdicate: at r = a radiation from the medium at Tl’

and at r = b radiation into the medium at TZ' h., and h2 represent the ratio

R

af wcamefmmnmn el e o m s b & L S I S SR e o e B La ok PRI TN I R |
OLfI SUriac Cconygucraiivec Lo v I1UuCLivilty Ol LOC [IlCululn. 11€ andiyticCal

solution for this problem is

T.h, 22 2 2
1"1 2 [6°h, - r(bh, - 1)] + T,h, b [r(ah; + 1) - 2°h)]

r[b%h, (@h; +1) - a’h, (bh, - 1)]

For numerical computations, we choose

Figure 6-9 shows the predicted temperature distributions ﬁsing only
two elements, linear, quadratic or cubic. The numerical results obtained
by using higher order elements and the analytic solution agree very closely;
the results obtained by using linear elements, though less accurate, are
generally good. Figure 6-10 shows the temperature history at the point r =
1.5 with various element representations for the same problem, with Galerkin
process in time. In all the cases the solutions converged to the steady state

solution (convergence criterion 10'4) within 20 time steps.

6-16
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0.8 |—
0.7 —
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3 Analytic Solution
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(o Svm Element
y Type
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X Quadratic
B cubic

1 1 1
1.4 1.6 1.8 2.0

Radius. r

Fig. 6-9-Comparison of Predicted Temperature Distribution for a Hollow
Sphere Subject to Radiation Boundary Conditions
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Fig.6-10 - Predicted Temperature History of a Typical Point (r = 1.5) of the Hollow Sphere
with Radiation Boundary Conditions (At = 0.2, Galerkin in Time)
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5.2 IMPACT PROBLEMS WITH HYDRODYNAMIC MODEL
5.2.1 Description of a Typical Impact Problem

As pointed out in our earlier discussions, a hydrodynamic model is a
aood approximation in the early stages of the high velocity impact process,
iuring which the pressure is comparable to the shear strengths of the target
naterial. As a starting point we begin with a numerical solution to the hydro-
lynamic equations with the inviscid adiabatic approximation. In this case the

ronservation equations, with O'ij = - P'Sij’ become

0 9
517 () = -g(-i-(pvi)

(6.9)

o 0
87:—(Vj)+via(vj)+0\j = - =— + F, (6.10)

Jg 3 i)
5 (E) + vy axi (E) +OFE = . 8xi (Pvi) + Fi v,
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_ Consider the impact of a cube onv',a_'simi.‘-iﬁfip.ife'bbdy of possibley dis-
 similar material at a velocity 'o£ Vo' Fpr si:mp'liéity we can assume that the
target is a semi-infinite cube of dimension four time larger than that of the
projectilé. Because of_ the symmetry about the z—ax.is, it is sufficient to
analyze the quadrant bounded by pdsitive X,y,z-axes (see Fig.6-11). A
typical finite element mesh of the projectile-target configuration is shown

in Fig.6-12, which is generated by a program subroutine (MESH). The sub-
routine generates nodal numbers and their coordinates in the target as well

as in the projectile.

Initial Conditions: We assume that the target is at rest at time t= 0.

Let S_ denote the set of nodal points in the projectiie and St denote the set of
nodal points in the target. Then SO-= Sp M St denotes the set of nodal points
common to the target and projectile (i.e., on the interface). For t= 0+, we

have the following initial conditions for density, pressure, and internal energy.

Pi = Py 1 €S,
= 1 N
pl Pop, i € "p
P, =0 1 €S U S -8
i p t 0
P, =P , i €8
1 0O (]
. = 0 i & e
€ , 1 € SP W] St

where the subscript '"i'" refers to the 'ifh node, pot and pop being the initial
densities of the target and the projectile, respectively, and P0 is the pressure
at the interface, and should be calculated from the Rankine-Hugoniot relations

for the target and projectile,

Projectile Target
plzpop(vo_q.)(vo+Ul) P2=p0th2
(1-n) (V,+T)) =V -q (1-n)U, =4 (6.12)
eg = Py (-m)/20,, ¢, = Py (1-m)/2py

6-20
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a. Entire Configuration

P i R
7
/7
74 » x

b. A Quadrant of the Target-Projectile System

Fig.6-11 - Impact of a Cube on Semi-Infinite Target
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Fig.6-12 - A Typical Finite Element Mesh of the Projectile-Target
Configuration
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Here the subscript "1' refers to the pr_ojec'i':ile and "2" refers to the target;
q is the particle velocity at the interface and U is the shock velocity. We
have assumed in writing (6.12) that the iditial pressure and internal energies

are zero. From (6.12) we obtain

[

V. -q =¥Y— (1 - 13
o~ 4 Pop (1 -n) (6.13)

and
L
‘/PZ .
qQ =Y¥Y7— (1 -n,) (6.14)
Pot 2 . _
The interface pressure is given when P1 = Pé— = Po' When the projectile and

the target are of the same material the interface particle velocity, q, is

given by

q = V /2 (6.15)

To calculate the interface pressure Po at impact we proceed as follows:
We have from (6.13) and (6.14),

Vo 1 - m
n, = 1-p, v (6.16)
VP_ op
. _ 1

For various values of n; we can calculate U fro_rn (6.16), wherein the pres-

-sure P, is calculated from the Hugoniot equation of state.

Initial conditions on the velocity components U, v and Wy in %,y and

z-directions, respectively, are "

u.1=v.1=0, iCStUSp

wp 70 i€ 5,-5, ' 6.17]
w, o= -V, i €S, -,

w, = -q, iCSO

-Whpre q is computed from (5.14) (q is equal to VO/Z for like metal impacts);

6-23
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Another way is to usc conditions at t= 0-, ‘the time prior to impact, as
initial conditions. To do this, every unknown is set equal to zero except
density and those quantities related to impact velocity such as velocity,
momentum and total energy in the projectile. These initial data may be dis-
continuous, which are, of .course, taken care of-_co.nveniently in the present
formulation. This set o-f.i.niti_al conditions has been used in most of the com-

putations.

Boundary Conditions: As mentioned earlier the pressure must be zero

on the free surfaces. Since the target is semi-infinite, the material particles
far away from the impact region are unaffected. Hence, the internal energy
and velocities must be zero and the density must be undisturhed. These
boundary conditions, together with conditions for the plane of symmetry, are

sketched in Fig.6-13.

Remark on the Equation of State: As mentioned earlier, there are two

forms of equation of state being frequently used in high velocity impact prob-
lems. They are the Los Alamos equation of state and the Tillotson's equation
of state, both obtained from experiment. Obviously values of computed pres-
sure distribution in materials depend heavily on the particular equation of state
being used, which in turn will affect the entire numerical solution.. Some un-
certainty apparently exists regarding the two equations as they do not appear
to agree closely in general and each seems to have its own range of validity.
F'or instance, the Los Alamos equation of state and Tillotson's equation of
state differ substantially in the case of aluminum (see Figs.6-14 and 6-15)
for internal energy values below 7.5 Mb-cm3/g1n, and agree closely in the
range of 40 to 43 Mb-cm3/gm, as seen in Fig.6-16. Therefore, caution must
be exercised when a specific equation of state is employed in the numerical

computations, and it seems that a more accurate equation of state is needed.

6.2.2 One-Dimensional Impact Problem

A one-dimensional impact problem is used hercin to test the validity

of the formulations presented in Seciions 4 and 5. The problem under
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consideration is that an’infinite plate traveling ats specified speed, vb', hits
normally on another infinite plate at rest, as depicted in Fig.6-17a. The two -
plates are 30 cm thick, and composed of the same aluminum material with
initial density p_ = 2.77 grh/cm3. The impact velacity is chosen to be v, =
0.008 cm/usec for which a solution in elastic range of impact is available for

comparison [40].

The problem was solved by the three-dimensional models described in
Sections 4 and 5. The mesh and nodal numbering are generated by subroutine
MESH and depicted in Fig.6-17b. The Rankine-Hugoniot pressure, PS, is

readily obtained, using the Los Alamos equation of state,
P_ = 5.99868 x 10”> megabar ] (6.18)

The fdllowing numerical computations are performed based on inviscid assump -

tion together with the Los Alamos equation of state.

Solution Computed by Methods of Weighted Residual: It is found from

the numerical solution of (6.10) that the Galerkin approach does not perform
satisfactorily. Although the scheme appears to be stable up to the time com-
puted, there is a sign that the pressure development in the material tends

to grow indefinitely. This phenomenon becomes more severe when the impact
velocity is increased. Spurious oscillations with fairly large amplitudes always
gather near the wave front, and the peak pressure is seen to exceed the Hugonio
pressure by about 50% to 100% as the velocity v, increases from 0.008 to 0.75
cm/usec. As remedies to the instabilities, some modifications ‘such as incor-
porating the mid-—point. Runge-Kutta scheme into the code, as well as other
methods of weighted residuals such as the least squares approach are intro-
duced. Figure 6-18 shows the time history of pressure at interface computed
by the method of least squares. The results computed by a modifiled Galerkin
approach using mid-point Rungce-Kutta scheme are found to be almost identical

to those shown in Fig.6-18. There is some improvement on the development
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history of the pressure field. However, the pressure at the interface still
shows a tendency to diverge as time increases. The numerical instabilities
can also be detected by the spurious oscillations near the shock fronts as

shown in Fig.6-19.

Solution Computed by Weak Solution Formulation: The pressure history

at the interface computed using (5.15) and (5.16) with a=1/2 is depicted in
Fig.6-20, and the corresponding pressure distributions at various times are
shown in Fig.6-21. Itis seen that the results are improving compared to the
ones computed by methods of weighted residuals as depicted in Figs.6-18 and
6-19. The solution may be improved even further when the parameter a in
(5.15) is increased. Figures 6-22 and 6-23 show the pressure history at the
interface using a=2, and 4, respectively. The corresponding pressure dis-

tributions are plotted in Figs.6-24 and 6-25.

All results discussed so far and depicted in Figs.6-18 through 6-25 are
computed using 16 linear elements. As shown in Figs.6-21, 6-24 and 6-25,
the overshoot due to the numerical instability decreases rapidly, and the zig-
zag behavior near the wave front becomes less severe as the parameter a
increases. These facts indicate that the numerical dissipation introduced in

the scheme is proportional to the parameter a.

The plots also show some substantial differences in amplitudes of the
pressure waves among different a and u values. In addition, as shown in
Figs.6-22 and 6-23, the numerical dissipation increases as a decreases,
and the phase lag becomes more apparent at the same time. These imply
that various errors may enter in the computations if the scheme is over-
dissipated. The sensitivity of the solutions upon the factor a, however, can
be made inert by refining the mesh as shown in Figs. 6-26 through 6-29 where
30 even spaced linear elements were used in the computations. In this case,
the same time step size as vmployed in the 16-element case was used. This
verifies the statement mentioned in Section 5.3, namely, the factor a is indeed

related directly to the ratio of the time step size and the element size. As the
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~mesh size reduced, the effect of a on the a.ccuracy of the solutmn becomes _
less important. Tho results, usmg 16 quadratic élements also show the same
trend. In Figs.6-30 and 6-31, the pressure. hLStory at the _J.nterface is depicted
using a=2.0 and a=4.0, respectxvely, with dlfferent a. CAs e:':pecte& these
results are improved compared to the cases with 16 linear elements, but are
less smooth when compared with that usmg 30 linear elements. - Similar com-
parisons can also be made for the pressure distributions (see, e.g., Figs.6-24,
6-25 for 16 linear elements, Figs.6-28, 6-29 for 30 linear elements, and Figs.
6-32, 6-33 for 16 quadratic elements).

As is seen, all the cases seem to underpredict the peak pressure com-
pared to the analytic solution. However, with the same given conditions and
Los Almos equation of state, the pressure computed by Rankine-Hugoniot
relations is P_ = 5.99868 x 1073 megabar. This value is approximately
equal to the average value as shown in Figs.6-28 and 6-29 which indicates
that our numerical results are quite reasonable. Accordingly, Ps should be
the upper bound for the average pressure distribution in the material under
high velocity impact, since the physical as well as numerical dissipative
effects may actually reduce the pressure buildup inh the material. Therefore,
it is believed that the deviation of the analytic solution from the computed
Rankine -Hugoniot pressure and from our results could be due to one of the

following:

e The assumptions made in the theoretical analysis
lead to a too simplified model, so that the analytic
solution was overestimated,

e There are possible misprints related to the given
conditions in the report we obtained, and

e The analytic pressure distribution, Pg = 7.22 x 1073

was normalized by the impact velocity, Vo= 0.008
cm/Isec, but was not mentioned in the report.

These possibilities hopefully can be cleared up as soon as we locate the

original report.
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The speed of sound in a material can be obtained in the relation

2 _,oP :
Cs =), (6.9)

Following the Gibb's equation, one has

2 _P o8P , 8P
CS —-p7 o€ +-§E . (6.10)

where € is the specific internal energy which is now being considered as a
function of total specific energy and the particle velocity. Thus the propagation
speed of the pressurce waves can be computed by substituting the nodal solution
of the conservation equations and equation of state on the clement containing the
wave front into (6.10). The numerical values of CS in the target obtained using
Los Alamos equation of state at some typical times are shown in Table 6-1.

It is seen that the values oscillate around the shock speed computed by Rankinc-

s

Hugoniot relation, i.e., C = .53569 cm/usec. In elasto-dynamic theory,
on the other hand, the soun%-sI_{)eed is represented by .

(1 - VE

c .= A+ 0vy(1 - 2v)p

s

(6.11)
E{

where p is the Poisson ratio, E is the Young's modulus. With v = 0.33, E =

107 psi for aluminum, Eq. (6.11) gives Cs .= 0.60729 cm/[J.sec, which deviatces
Eg.
from the values obtained by the present approach by about 10%. This implies

that the compressibility effects play an important role in the dynamic response
of materials under high velocity impact loads. In addition, although in the
present hydrodynamic model the material is assumed to be inviscid, the dis-
sipation resulting from the equation of state and numerical viscosity as well

may affect the local speed of the pressure waves.
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Table 6-1

PROPAGATION VELOCITY OF PRESSURE WAVES IN TARGET -
AT VARIOUS TIMES AFTER IMPACT
(WITH 30 LINEAR ELEMENTS)

Poisson Ratio, ¥ = 0.33; Young's Modulus, E = 107 psi;
Impact Velocity, V0 = - 0.008 crn/].l.sec

Time, t(usec) 0 5.0 10.0 18.0 26.0 31.6 35.0

Shock Speed, .53442 .54123 .53846 .53880 ;53679 .53801 .53782
CS (cm/ psec) . :

Rankine-Hugoniot — C, = .53569 cm/usec

(1L - VE
T+uy (1-2v)p

3-D Elastic Waves — CS = ‘[(

= .60729 cm—/[l.seé B
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Momeﬁtgm and Energy Distributions: Momenturn and total energy dils-

tributions at t= 20 and 30usec are depicted in Figs.6-34 and 6-35 for 16 linear
elements, Figs.6-36 and 6-37 for 30 linear elements, and Figs.6-38, 6-39 for
16 quadratic e'.l_er'n'ents. In these plots, the parameter a=2.0 are used. A
better accuracy using 30 linear elements against' 16 quadratic elements is
obvious. In particular,.as seen in the i'arefaction_ région, the momentum and
total energy distributions éomputed using 16 quadratic elements are severely
distorted by the numerical instabilities. Hernce, a larger parameter a is
needed, although it is not so obvious from the plots of pressure distribytions.
Depicted in Figs.6-40 through 6-42 are momentum and total energy distribu-
tions using various types of elements with a= 4.0, and as expected, better

results are obtained.

6.2.4 Three-Dimensional Impact Problem

A simple problem of a 4 cm aluminum (po = 2.702 gm/cm3) cube im-
pacting at a velocity of 2.6 crn/|l sec on a semi-infinite cube (16 cm cube)
was also tested. The numbering of nodes in the mesh is depicted in Fig.

6-43, with the corresponding boundary conditions given in Fig.6-13,

For this problem, only preliminary results by the Galerkin procedures
are available, which are shown in Figs.6-44 and 6-45. Figure 6-44 shows
the pressure variation with time at various nodes on the interface, while
Fig.6-45 depicts the pressure variation with distance into the target at various
time. In the coi‘nputations, Los.Alamos equation of state was used and nega-
tive pressures at any node in the projectile-target configuration were not
allowed. Nor was the movement of free surface accounted for at the time
of computation. Like the one-dimensional problem, the Galerkin formulation

again indicated some numerical instabilities which must be remedied.

Computations using the weak solution formulation is in progress, which

will be discussed in the final report.

6-51



29-9

24
22
20—
18—
Momentum
N o
o
0
TS 14
[ (5
E &
o © .
Kox Total Energy
L
E-. Ef) ™ " ey e "”\\\ )
3 & 50 ™
5 e N
§3 o
Za
4-—
22—
0 . . _
10 20 30 40 50 60
-2l Distance from Projectile Free Surface, z (cm)

Fig. 6-34— Momentum and Total Energy Dlstrlbutlons at t = 20.0 usec

(TA T imansw Tlams cméae - - N N

0060650 UJ, DAUH-DSWT

1



€5-9

Momentum, -W x 103 (megabars)

Total Energy, E x 105 (megabars)

18—

16—

14—

12—

10

Momentum

| 1 | | . o,

10 20 30 40 50 o 60

Distance from Projectile Free Surface, z (cm)

Fig. 6-35 —Momentum and Total Energy Distributions at t = 30.0 usec
(16 Linear Elements; & = 2.0, a = 0.0)

0060660 YL OTUH-DSWT



$a-9

Momentum, -W x 103 (megabars)

Total Energy, E x 105 (megabars)

24

22

Momentum

L | LN
20 30 40

Distance from Projectile Free Surface, z (cm)

Fig. 6-35 — Momentum and Total Encrov Distributions at t

20.0 useer

60

S Q0eN6ECT ML DT OSWT



99-9

gabars)

=3

Momentum, -W x 103 {ms:

(megabars)

5

Total Energy, E x 10

24—

22

20

18

12—

10—

8

I Total Energy

Momeantum

\\\

6 \
A -
\/\ / Ne——" S——mNaa

- V
2——

: L l l W
0 10 20 30 40 50 : 60
20

Distance from Projectile Free Surface at t = 30,0 psev

Fig. 6-37 — Momentum and Total Energy Distributions at t = 30.0 usec
{30 Linear Elemuonts: a = 2.0, a = 0.0)

00606EC UL DHIH-DSW




9¢-9

2
Momentum., -W x 107 (maegabars)

(muegabars)

5

Total Encrey. E x 10

Total Energy '
T

Momentum

4»—
2_
. | 1 | -
10 20 30 40 50 .60
2L | l

Distance from Projectile Free Sarface. z (cm)

Fig. 0-38 — AMomentum and Total Eneroy Distributions at t = 20.0 nser-

SAMIT-OSWT -

T On6NRE T A1



LS5-9

Momentum -W x 10.5 (m=gabars)

Total Encrgy, E x 10‘5 (m«=gabars)

24r

22
20

18—

16—

14—

12_§—
|

10

‘~’

Momentum

f Total Energy

\

10 20 30 40 50 60

Distance froin rejectile Free Surface, z (cimn)

Pig. 6-39 — NMom pium and Total Energy Distributions at ¢ = 30 ;=oc
(16 Quadranie Elen, ntsia =2.0. a = 0.0)

DT - OSSN

NUL06s M




b/

Mome=antum

LMSC-HREC TR 1390900

gy

al Ener

-

To
1
10

24—

22—

20—

18

61—
21—

_ [ |
) [aM (=) [S ]
— —t -

16—

(sx1eqedcwr) mo~ x 9 ‘A3xouy {eIOL

(sieqedawi) Q] X M- ‘Wnjuswop

€

6-58

30
Distance {rom Projectile Free Sarface, z {(¢m)

<

[¥a}



65-9

(magabars)

3

Momantum, -W x 10

Total Encrgy, E x 105 (megabars)

24

22

20

18

16

14

12

10

Momeantum

l |

10

20 30 40

Distance from Projectile Free Surface, z (cm)

Fig. 6-41 — Momentum and Total Energy Distributions at t = 20.0 usec
(20 T ivmear Flomonter a =4 0 o - [ANNAR ’

- 60

006965 CH M1 DAMH-DSWT



09-9

Momentum, -W x 103 (megabars)

5

Total Enervy, E x 10

(mogabars)

24

22

20

18

16

14

I

-

Momentum

“~rN

\\t/— Total Energy

10

20 30 ' 40

Distance from Projectile Free Surface, # (cm)

50

S 60

Coveat6Hs (M

SN DS




19-9

-

&—L—d o~

222 23 24 25-

el

‘ y ‘Bottom Grid

Fig.6-43 - Numbering of Nodes in the Finite Element Mesh

00606£d VL DAUH-ISWT



79-9

141 1138 135

126
132 1129
. 101
| 683 \ (TS TR AT
' ' 76
96 P 86 |81
' 51
&3 ®56 61 |56 1
—4- —¢_—o—¢°2°
‘16 11 36 131
21 16 11 6
Left Side

-t

x 25

Fig.6-43 (Continued)

N |
o |
143 142 .
134 [133" 132
_ ,%11_3 _112'-11.1 '
ﬁ25. 124 - _‘123?122 121
. _
7100 99 #98_' 97’%
$75 74 Wi’l
50 ?49 ‘-4?8. ‘47.-’-‘_46
. VD S
L 24 23 23 21 .
Back Side

Y6HO06ECL U, DAMH-DISWT



Pressure {megabars)

LMSC=HREC TR D390900

3.0
X - 0.01
o 0.02
A - 0.03
o] - 0.05
® 0.07
o Y

2.0 0.12

1.0

t .37
0.0 2.0 8.0

16.0

Distance Along the Axis of Symmetry (cm)
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6.3 IMPACT PROBLEM WITH HYDROE.LASTO'-VISCOPLASTIC MODEL

The governing equations _With their finite element analogues are given
in Section 5. The computer code will, at the end, be capable of handling large

déformations, anisotropic materials, 'plé,Stié yielding and material fracture.

The one-dimensional impact problem discussed eé,rlie_r is used also to
test the present model. The problem description and the finite element mesh
have been shown in Figs.6-17a and 6-17b. In the computations, the material

constants are assumed to be:

Initial density, p_ = 2.77 gm/cm3

Shear modulus, p= 0.276 megabar
The impact velocity, v, = 0.008 cmm /U sec, and Los Alamos equation of state
was also used for the present problem. For the purpose of comparisons,

the problem was solved by both the Galerkin method and the weak-solution

formulation.

Results Computed by Galerkin's Procedures: Figures 6-46 through 6-48

show the pressure and axial stress histories at the interface, the normal stress,
momentum and total energy distributions computed by the Galerkin method.
When they are compared to the results computed from the inviscid hydrody-
namic code, it is clear that the spurious oscillations behind the shock front
are smaller. However, the pressure development at the interface seems again
to grow indefinitely, though the results computed up to the time is still finite.
The axial stress, on the other hand, is found to be much lower than the Hugoniot
pressure, Ps. Moreover, the normal stresses on planes perpendicular to the
axis are mostly positive, which imply the materials are under tensile stress

in the axial direction. This obviously is not physicaliy correct. These phe-
nomena, therefoi'e, indicate that the numerical results coinputed by Galerkin's

method are totally unacceptable.
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Results Computed by Weak Solution Formulation: Thé numerical solu-

tion of the problem is much improved when the technique based on ‘weak
solution formulation is used. In.Fig. 6-49, the pressure as well as the axial
streés history are depicted against time. .The parame_fers used in this com-
putation are a=4.0, a = 0.0, and the time step, At = 0.2sec. When these
rgsults are compared with those in the inviscid case (see Figs.6-22 and 6-23)
some deviation is observed. In the inviscid hydrodynamic model, the‘pressure
history computed using both a=2.0 and a=4.0 is found to be damped out signif-
icantly as time increases. Using the present method with a=4.0, however,
results seem to suggest that less dissipations are present. The reason for,
this is not clear at the moment. Further mathematical study of this algorithm

is needed to clarify the question.

The distributions of the normal stresses at £=10.0, 20.0 and 34.2usec
are depicted in Figs.6-50 through 6-52, respectively. As indicated in the
plots, the compressive axial stress lozz has an average value approximately
equal to the Hugoniot pressure, Ps;" after some time of the impact. This,
again, suggests our numerical results are quite reasonable. For this partic-
ular example, the impact velocity is moderate, and the.v.iscous effects may
come only from the equation of state but not from the constitutive equations,
i.e., the shear stresses computed from the constitutive equations are negligibly
small compared to the normal stresses. This implies that, the dynamic re-
sponse of the materials due to impact is in the elastic range, and the stress

wave must have an average value approximately equal to Ps'

From Figs.6-50 through 6-52, we may also find the fact that, cven the
parameter a used in the computations is set to be 4.0, the spurious oscillations
behind the wave front are still apparent. The lack of numerical dissipative
effects in the scheme can also be detected in the interacting region of rare-
faction waves as depicted in Fig.6-53. To smooth out the zig-zag behavior,
an increase of a can be employed, so-long as the stability criterion of the
present time marching scheme is not violated. A bhetter way for reducing
these oscillations, however, would be to refine the mesh and/or use higher
order elements. Further studies on this aspect are underway and dectailed

discussions will be presented in the forthcoming final report.

6-69



3
. 10 (megabars)

Axial Stress, -o

(megabars)

3

Pressure, P x 10

LMSC-HREC TR D390900

 Axial Stress o :
.- S T zz

—— s o Pressure

11—

Time, t (usec)

Fig. 6-49 — Axial Stress and Pressure Develop’mehts at the
. Interface (16 Linear Elements; a - 4.0, a= 0.0)

6-70



IL-9

3

(mzgabars)

Normal Siresses, -0 x 10

1-D Analytic Solution

Elements; « = 4.0, a= 0.0)

8

7 —

61—

5= 92z

4l 3-D Numerical
Solution

3

2
ya 0 ex & O’YY

l.—

S e \17"5 — .
| 10 20 30 40 ~ 50 60
Distance from Projectile Free Surface. z (cm)

Fig 6-59 — Normal Stresses Distributions att = 10.0 pusec (16 Lincar

00606€ (1 ML DHUIT-DSW'T



:
r, )

ZL-9

Normal Stresses, -0 x 103 (megabars)

10

ZZ

3-D Numerical
Solution

" Distance from Projectile Free Surface, z (cm)

Fig. 6-51 —Normal Stresses Distributions at t = 20.0 psec (16 Linear Elements; =
a=4.0. a=- 0.0) . o

60

0060650 UL DTIH-DSWT-

.

AN



€L-9

(magabars)

3

Normal Siresses, -g x 10

10y

- '1-D Analytic Solution

3-D Numerical Solution

Distance from Projectile Free Surface, z (cm)

Fig. 6-52 — Normal Stress=es Distributions at t
a -4 a0

pusec (16 Linear Elements;

DA AIT- DS

D0 H06¢ XML

]



¥L-9

3
Momentum, -W x 107 (megabars)

Total Energy, E x lO5 (megabars)

18—
l'6r ,
14—
12—

10—

Total Energy

—_—"""\

Momentum

10

20 30 40

Distance from Projectile Free Surface, z (cm)

50

'60...

00606£C WL DAUH- DSW'T

|



LMSC-HREC TR D3go9on

7. SUMMARY AND DISCUSSION

The objective of the current stddy is to develop a finite element com-
puter program for the numerical solution of three-dimensional high velocity
impact problems, based on the Eulérian hydroelasto-viscoplastic formulation.
Two models, namely, the inviscid hydrodynamic model and the hydroelasto-
viscoplastic model were formulated. The theoretical basis and detailed form-
ulations for the subject problem were discussed in the preceding sections.
Computer programs based on the methods of weighted residuals and the theorm

of weak solution have been coded and debugged by running a number of test

problems.

For general impact problems, the conventional methods of weighted

residual were found to be unsatisfactory. The main reasons are:

® The formulations, such as in the methods of Galerkin
and least squares, do not generally satisfy the jump
conditions.

e The finite element analog of the problem always lacks
of dissipative terms, and thus causes severe numerical
instabilities behind the discontinuity such as shocks, as
well as in the interacting region of rarefaction waves.

These difficulties can be overcome by the two-step, time-splitting finite
element formulation based on the theorem of weak solutions. The success
with this formulation has been demonstrated by a number of numerical experi-
ments. As indicated by the numerical results, though the relaxation factor «
is related directly upon the ratio of the time step size to the mesh size, the
sensitivity of the solution upon a is rapidly reduced by refining the mesh and
by using higher order elements. The value of the parameter a in Eq.(5.15)can

also be reduced by similar treatments to acquire the same stability criterion.
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It xs beheved that an ophmal ch01ce for a would be the sahsfactlon of the |

" followmg cond1tion- '

Despite the successfulness of this presently developed technique, its
mathematical structure needs to be investigated further. At the present time,
the suitable choices of a and a rely mainly on numerical experiments; the
stability criterion for the present scheme has not been analjfzed_. These prob.
lems can only be resbl'.ved by a thorough mathematical analysis of the present

procedure.

In view of the findings up-to-date further work will be continued as

follows:

e Investigate the mathematical structure of the two-step,
time-splitting, weak-solution formulation developed in
this study.

e Incorporate a subroutine to properly account for the
free surface movement.

Incorporate a large system equation solver.

® Include subprograms for plastic yielding and material
fracture.

e Develop a code for coupling Eulerian and Lagranglan
modes.

e Prepare and run the demonstration problems.
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